

A review of six medicinal and aromatic plants and their health benefits

<https://doi.org/10.32712/2446-4775.2025.1667>

Franzen, Felipe de Lima^{1*}

 <https://orcid.org/0000-0001-8925-4098>

Oliveira, Mari Silvia Rodrigues de²

 <https://orcid.org/0000-0003-4803-5643>

Bolini, Helena Maria Andre¹

 <https://orcid.org/0000-0001-9841-4479>

¹State University of Campinas (UNICAMP), Faculty of Food Engineering, Department of Food Engineering and Technology (DETA). Rua Monteiro Lobato, 80, Cidade Universitária, CEP 13083-862, Campinas, SP, Brazil.

²Federal University of Santa Maria (UFSM), Teaching, Research and Extension Council, Department of Food Science and Technology. Camobi, CEP 97105-900, Santa Maria, RS, Brazil.

*Correspondence: [frenzen2@gmail.com](mailto:franzen2@gmail.com).

Abstract

Brazil has a large biodiversity of plants with nutritional and biological properties that are important for human nutrition. The objective of this study is to review the use of plants in nutrition and the presence of bioactive compounds that bring health benefits, referencing research with six different native and exotic plant species ("açaí", "cinnamon", "guarana", "hibiscus", "jambu" and "yerba mate"). Numerous studies on the aforementioned plants have been carried out to evaluate and confirm their effects and benefits. Clinical and metabolic studies have shown that the consumption of these plants, especially their extracts, can prevent or treat several diseases such as Alzheimer's, cancer, obesity, diabetes, cardiovascular disease, atherosclerosis, hepatic and cardiovascular fibrosis. The use of extracts from these plants in foods improves some quality characteristics such as oxidative stability, nutritional value, hygienic-sanitary and sensory properties, in addition to the foods becoming functional with antioxidant properties. This review indicates that these plants have the potential to be used as ingredients in formulations of various foods and should be considered important for future studies with the investigation of their effects on these foods.

Keywords: *Euterpe oleracea* Martius. *Cinnamomum zeylanicum* Blume. *Paullinia cupana* Kunth. *Hibiscus sabdariffa* DC. *Spilanthes oleracea* L. *Ilex paraguariensis* A.St.-Hil.

Introduction

Plants have been an integral part of our culture since antiquity and are cited in literature as wonders of nature. They have nutritional and biological properties and have been used in food preparation by different cultures for centuries. These edible, medicinal and aromatic plants are part of various cuisines in Asia, Europe and in the Middle East. Plants are important sources of nutritional and bioactive compounds, such as a high amount of antioxidants^[1-3].

A variety of pharmacological effects are obtained with the use of plants with bioactive properties, either as pure compounds or as standardized extracts, combined with other sources of bioactive compounds, which are far from being exhausted^[4,5].

There are several plant species that have been shown to be important sources of bioactive substances, and therefore studies to assess their potential against chronic diseases have been conducted in various parts of the world^[6-8].

It is known that the valuation of a natural plant extract can be based on the concentration of the target compounds and their bioactivity, in addition to providing health benefits^[9-11].

Many chemical constituents found in plants, commonly called phytochemicals, such as polyphenols, terpenes and carotenoids, have been described as potential antioxidants, prevention and reduction of diseases^[12-14].

Consumers are increasingly interested in foods that can reduce the risk of disease, thus benefiting their health and well-being. By using plants with bioactive properties, either as pure compounds or as standardized extracts, combined with other sources of bioactive compounds, a variety of beneficial effects on health and nutrition are obtained, which should be increasingly studied^[1-3].

This review of these six different plant species is justified by the nutritional, medicinal and economic importance that these plants represent in several areas of knowledge. Each of these species has distinct biochemical characteristics, with potential benefits for human health, in addition to playing important roles in gastronomy, local culture where they are inserted and the globalization of functional foods.

Research into these native and exotic plants opens new possibilities in the field of biotechnology, functional foods and phytotherapy, highlighting their potential for innovation in products that meet a growing demand for healthy and sustainable alternatives.

In this review study, we will discuss the importance of plants with bioactive compounds that bring health benefits, referencing research with 6 different plant species ("açaí", "cinnamon", "guarana", "hibiscus", "jambu" and "yerba mate") which prove the benefits of these plants when consumed *in natura* or in the form of extracts.

Search methodology

The objective of this study was to carry out bibliographic surveys related to the use of six aromatic and medicinal plants, such as treatment or health prevention, in addition to the presence of bioactive compounds and what has been studied in the last 20 years.

This survey was done through electronic scientific databases, including Science Direct, Scopus and others. The scientific names of the relevant species mentioned in this article were used as keywords for the searches: *Euterpe oleracea* Martius., *Cinnamomum zeylanicum* Blume, *Paullinia cupana* Kunth, *Hibiscus sabdariffa* DC., *Spilanthes oleracea* L. and *Ilex paraguariensis* A.St.-Hil.

Articles in English, Spanish and Portuguese from 2003 onwards were selected according to their importance for this review study. For this research, 128 scientific articles were selected that presented results on consumption habits, populations that use them, benefits and socio-environmental impacts of the plant species mentioned. In addition, traditional use in food, the part(s) of the plant used, the preparation method(s) and the form of administration in vivo and in vitro were also taken into consideration for this review.

Data analysis and context

Açaí – *Euterpe oleracea* Martius.

Açaí (*Euterpe oleracea* Martius.) is known as a “superfood” due to its high concentrations of nutrients and other health-benefiting properties^[15]. Superfoods are classified as foods rich in bioactive phytochemicals. These compounds occur naturally in plants and provide color, flavor, and odor to foods^[16].

Açaí, a fruit native to Brazil, has high concentrations of bioactive compounds and is consumed in different regions of the country^[17,18]. Its production increased by more than 55% from 2018 to 2022, and exceeded 1.690.000 tons in 2022, being exported to the world by Brazil^[19,20].

Açaí pulp is mainly consumed by the Brazilian population in the North and Northeast regions of the country. However, there has been an increase in demand for açaí pulp in recent years in national and international markets, and fruit has aroused the interest of investors and researchers. This is mainly due to the high antioxidant capacity of açaí provided by its high anthocyanin and tocopherol contents^[21-23].

To make açaí more accessible to consumers around the world, açaí berries are processed soon after harvest. They are frozen, freeze-dried, or turned into pulp or powder to preserve their nutritional value and extend their shelf life. Frozen açaí pulp is a common form of açaí that retains most of its nutritional benefits. Frozen açaí is a convenient option for consuming this fruit outside of the Amazon rainforest^[24].

Polyphenols are the predominant chemical constituents of açaí, notably anthocyanins and flavonoids, which justify its classification as a functional food which helps in preventing several degenerative diseases^[9,25,26].

Açaí berries are rich in anthocyanins, a flavonoid that gives the fruit its dark purple color. These compounds have antioxidant properties that help neutralize free radicals and reactive species, strengthening the body's defense system and promoting health. Free radicals are naturally formed in the body, but when produced in excess, they can attack cell membranes and nuclei, leading to oxidative damage to lipids, proteins, and

nucleic acids. Antioxidants are crucial to controlling this process, since excessive free radicals and reactive species have been linked to several health problems^[27,28].

Studies have shown that the consumption of foods rich in polyphenols, especially those of the flavonoid class, has been associated with a low risk of developing several diseases due to the antioxidant properties present in the food. Açaí is one of the fruits that has been gaining prominence, as it has significant amounts of a group of flavonoids. The main anthocyanins found in açaí are cyanidin-3-glycoside and cyanidin-3-rutinoside^[21,23,29].

Although data on the antioxidant potential of açaí species are conflicting, some studies in the literature report that anthocyanins are the compounds which most contribute to the antioxidant power of açaí, being present in higher concentrations than those found in several fruits, such as blueberries, cranberries, plums and raspberries. Some studies consider that açaí has a lower concentration of total phenolics (13.9 mg/g GAE) than other dark fruits^[22,30,31].

The way you consume açaí has a direct impact on its health benefits. Consuming this fruit in its pure form preserves and enhances its positive effects. For those looking to maximize the benefits of açaí, it is recommended to opt for the most natural way of consuming it possible^[24,27,28].

Cinnamon – *Cinnamomum zeylanicum* Blume

In Brazil, the two main varieties of cinnamon sold are Chinese Cinnamon (*Cinnamomum cassia* (L.) J. Presl) and Ceylon Cinnamon (*Cinnamomum zeylanicum* Blume), also known as true cinnamon. Of these, *C. cassia* is the most widely found and consumed, mainly due to its lower production cost and greater availability. However, there are significant differences between these two varieties, both in terms of chemical composition and health effects^[32].

Chinese cinnamon (*C. cassia*) is known to contain relatively high levels of coumarin, a compound that, in large quantities, can be toxic to the liver and cause liver damage. In addition, coumarin has anticoagulant properties. Regarding the flavor of this species, it is more pungent and stronger, and the aroma is more intense compared to the species *C. zeylanicum*^[32-34].

The species *C. cassia* can help regulate blood sugar and is traditionally used to control glucose levels in people with type 2 diabetes, in addition to having anti-inflammatory and antioxidant properties^[34,35].

Due to the high coumarin content, excessive consumption of *C. cassia* can lead to liver damage, especially in sensitive people or children. In addition, people taking anticoagulant medications should avoid large amounts of this species, as it contains coumarin, which has anticoagulant properties^[32,33].

Ceylon cinnamon (*C. zeylanicum*) contains less coumarin than *C. cassia*, making it a safer option for regular consumption. This species is rich in antioxidants, especially phenolic compounds such as cinnamic acid and cinnamaldehyde, which provide anti-inflammatory and antimicrobial properties. *C. zeylanicum* has a milder, sweeter flavor with a delicate aroma, and is considered to be of superior quality in gastronomy^[33,36].

Like *C. cassia*, *C. zeylanicum* can also help regulate blood sugar, but with a lower risk of adverse effects. Its antioxidant properties help fight free radicals, contributing to the prevention of chronic diseases^[32,33,35].

There has been an increase in studies of the therapeutic properties of plants that may present an alternative therapeutic resource in recent years. One of these plants researched over time due to its significant biological properties is *Cinnamomum zeylanicum* Blume, commonly known as cinnamon. Various parts of the plant such as its bark, leaves, flowers, fruits and roots have medicinal and culinary applications. The chemical composition of materials obtained from different parts of a *C. zeylanicum* plant show considerable variation, resulting in different pharmacological effects. Cinnamon has great economic value and is widely used in various areas such as the pharmaceutical, food, cosmetics and beverage industries^[32-34].

C. zeylanicum is known as "cinnamon", "India cinnamon", "Ceylon cinnamon", being generally called "true cinnamon", and it is a plant native to some regions of India and Sri Lanka. The parts (bark, leaves, flowers and others) of cinnamon are bioactive compound sources which have antimicrobial, antioxidant, insecticidal activity, and are also used as flavoring agents in foods^[35-37].

The biological activity of cinnamon regarding its analgesic, antiseptic, anticancer, antispasmodic, coagulant, neuroprotective, hepatoprotective, gastroprotective, cardioprotective and antimicrobial potential, as well as its action in reducing and controlling the serum levels of fats in the blood have already been reported in literature. Several studies have shown additional evidence of the antimicrobial potential of this plant against gram-positive and gram-negative fungi and bacteria^[32,38,39].

Cinnamon has several medicinal and pharmacological properties that are effective in controlling human diseases like diabetes, Alzheimer's disease, cancer, arthritis, heart disease, indigestion, and tooth decay, etc.^[40].

Alzheimer's disease is a progressive neurodegenerative condition that leads to death, characterized by memory loss, severe behavioral abnormalities, and cognitive impairments. Although there is no cure, it is possible to slow the progression of the disease through different therapeutic approaches. Inhibiting cholinesterases, such as acetylcholinesterase and butyrylcholinesterase, is one such strategy, helping to preserve cognitive function. Another approach is inhibiting the aggregation of beta-amyloid peptides, whose accumulation in the brain contributes to neurodegeneration and dementia. In addition, monoamine oxidase inhibitors can alleviate symptoms associated with the disease, such as depression and psychosis. Phytochemicals present in plants such as cinnamon have shown potential to inhibit these enzymes and processes, offering a possible route to the development of treatments that slow the progression of Alzheimer's^[33].

Traditional uses of the species for medicinal purposes include the treatment of vaginitis, inflammation, neuralgia, wounds, diabetes, leucorrhoea and rheumatism. Cinnamon bark is one of the oldest herbal medicines cited in articles as an anti-inflammatory to fight pain, enteralgias, bronchitis and rheumatism. The chemical composition of cinnamon comprises type A procyanidins, dimeric, trimeric and oligomeric proanthocyanidins, camphene, sabinene, myrcene, fenchone, nerol, bornyl and cinnamyl acetates, geranial, cinnamaldehyde and eugenol. Biological activities which have already been reported for the species include analgesic, antipyretic, antifungal, anti-inflammatory, antimicrobial, antidiabetic and antioxidant effects^[34,37].

Guarana – *Paullinia cupana* Kunth

Guarana (*Paullinia cupana* Kunth., Sapindaceae) is a species native to Brazil of great economic and social importance. It is an evergreen shrub native to the Amazon region, which was domesticated in the Amazon due to its caffeine-rich seeds. Brazil is the only guarana producer in the world, meeting both national and

international demand. Guarana seeds have been roasted and used for hundreds of years by indigenous tribes for their stimulant, aphrodisiac and healing properties^[5,7,41].

In 2022, guarana production in Brazil was 2.460 tons. In the same year, the production value was R\$ 45.779,00. Its average production yield per hectare, in the same year, was 237 kg, with the state of Bahia being the largest producer of guarana in Brazil^[20].

The fruit is a dehiscent capsule and a dark brown seed partially encased in an air is visible when it opens. Its ripe fruit color can vary from yellow-orange, yellowish-red to vibrant bright red^[42].

Guarana seeds have several pharmacological functions, such as antimicrobial, antioxidant, anticancer, stimulant and cognitive functions, in addition to liver protection and weight loss. Many of these actions are likely due to the high methylxanthine and tannin contents in its seeds^[43-45].

Due to the high potential of guarana, in addition to its medicinal characteristics and profitability, it has become an important raw material for the cosmetics and soft drinks industries. Approximately 70% of production is used in producing soft drinks and energy drinks^[10].

The guarana plant is associated with a wide variety of pharmacological actions, including anticarcinogenic, antiproliferative, antimicrobial, antioxidant, energetic cytoprotective, thermogenic, antidepressant, and anxiolytic activities, as well as reducing oxidative effects and metabolic disorders^[43-45].

Guarana seeds are used by dissolving the ground roasted seed powder in water, without or in combination with other herbal medicines. Nowadays, guarana is commercially exploited by the beverage, cosmetic and pharmaceutical industries^[5].

Although there is a lot of interest in studying the caffeine in guarana, including its benefits and consequences, the most diverse pharmacological effects of guarana are associated with the tannins present in the plant's seeds, which represent about 16% of the seed composition^[5,46].

Guarana is widely used in the food industry in the form of syrups, extracts and distillates, mainly as a flavoring agent and as a source of caffeine by industries. The greatest economic value of guarana is currently in manufacturing beverages. The American Beverage Company (Ambev) alone uses 70% of all guarana seeds produced annually. The remainder of the production (30%) is destined for the pharmaceutical industry and export, mainly to Japan and the United States^[5,10].

The seeds are the commercially useful part of the plant due to the large amounts of caffeine, theobromine and theophylline, in addition to the high concentration of tannins and other compounds such as saponins, polysaccharides, proteins and fatty acids^[47,48].

Hibiscus – *Hibiscus sabdariffa* DC.

The Hibiscus genus (*Hibiscus sabdariffa* L.) stands out among plant diversity. Hibiscus (*H. sabdariffa* L.) belongs to the Malvaceae family, and is an important medicinal plant originally from India, Sudan and Malaysia, being later introduced in Africa, Southeast Asia and Central America. It is a shrub that is around 3 m tall, cultivated due to the interest in its leaves, calyces and seeds, which are used to prepare drinks with culinary and medicinal purposes^[2,49].

The fleshy calyces (sepals), thick red cup-shaped, are commercially important for producing beverages, juices, jellies and syrups in the food industry. In addition, these calyces are a good source of natural food coloring due to their high pigment content. Despite its wide consumption as a beverage and use in the food industry, hibiscus is also used in nutraceuticals, cosmetics and pharmaceuticals^[50,51].

Hibiscus is considered a plant with diuretic properties for gastrointestinal treatment, liver infections, fever and hypertension in traditional medicine. Hibiscus is a functional food in Asian countries and the economic interest is in dehydrated calyces used worldwide in the production of teas, foods, preservatives and antioxidants^[12,52,53].

It has traditionally been used effectively against hypertension, inflammation and liver disorders. Studies have shown that *H. sabdariffa* has multi-effects with antitumor, antioxidant and anti-hyperlipidemia activities. In addition, hibiscus extract has been reported to inhibit LDL (low density lipoprotein) oxidation and lower serum triacylglycerides and cholesterol. The extract from this plant can also reduce the formation of foam cells and inhibit the proliferation and migration of vascular smooth muscle cells, suggesting an anti-atherosclerotic effect of hibiscus^[54-56].

H. sabdariffa is a rich source of flavonoids and its anticancer potential has attracted the interest of researchers. Kaulika, Febriansah^[57] reported the cytotoxic potential of hibiscus in T47D breast cancer cells. Hibiscus petals contain flavonoids which may have antioxidant functions that play an important role in the pathophysiology of cancer. The authors concluded that hibiscus has potential as a chemopreventive agent based on its molecular fit and cytotoxic activity against T47D breast cancer cells.

Hibiscus flowers have a high anti-inflammatory effect. This effect was confirmed by using extracts from its flowers using a cellular modeling system. The polyphenol content in hibiscus works as an anti-inflammatory agent, improving antioxidant conditions and regulating the expression of cyclooxygenase-2. This also increases anti-inflammatory cytokine expression (IL-10) and therefore decreases pro-inflammatory cytokine expression (IL-6 and TNF- α)^[58].

According to Ojulari et al.^[59], the bioactive compounds derived from *H. sabdariffa* are effective against obesity, with a relevant decline in body weight, suppression of adipogenesis and inhibition of lipid accumulation. Hibiscus extract inhibited α -amylase activity, which therefore blocked sugar and starch absorption, which may aid in weight loss.

Sepal decoctions and infusions, and occasionally hibiscus leaves, are used in at least 10 countries in treating hypertension and hyperlipidemia with no reported adverse events or side effects^[60].

Jambu – *Spilanthes oleracea* L.

Acmella oleracea (L.) R. K. Jansen (sin. *Spilanthes acmella* var. *oleracea* (L.) C. B. Clarke ex Hook. F.), also known as *Spilanthes oleracea* L., is part of the Asteraceae family, first discovered in Peru. It is currently found in tropical and subtropical regions of the world, especially in northern Brazil, where it is known as jambu^[6,61,62].

It is an important medicinal plant traditionally used for its analgesic and anti-inflammatory properties, but also for being antipyretic, anticonvulsant, antidiarrheal, antidiuretic, antiseptic, antifungal, antiprotozoal, an insecticide, in addition to being used for culinary purposes^[13,62,63].

These properties are due to its endogenous content of bioactive compounds, such as sterols, coumarins, flavonoids, saponins, terpenoids, polysaccharides and especially alkylamides^[13].

Among the alkylamides, spilanthol (E, E, Z)-2,6,8-decatrienoic acid N-isobutylamide) is considered the most potent bioactive compound found in jambu. This compound is mainly found in its flowers, leaves, stems, and roots^[13,63,64].

Many studies have been conducted with this species to produce and extract spilanthol due to its pharmacological and medicinal importance based on typical effects of alkylamides, such as analgesic, neuroprotective, antioxidant, antimutagenic, anticancer, anti-inflammatory, antimicrobial, antilarvicidal and insecticidal activities^[65,66].

Yerba Mate – *Ilex paraguariensis* A.St.-Hil.

Yerba mate (*Ilex paraguariensis* A.St.-Hil., Aquifoliaceae) is a plant widely consumed in South America, especially in Brazil, Argentina, Paraguay and Uruguay. Its use extends across several local cultures, each with its own traditions and preparation methods, resulting in different forms of consumption that, in turn, can influence the availability of the plant's bioactive compounds^[67,68].

Mate (maté in Spanish) is an infusion made from the yerba mate plant (*I. paraguariensis*), which has been culturally consumed daily as a beverage in the regions of origin, with some reports estimating consumption of more than 1 L day⁻¹. For this reason, many studies, including human trials, are based on this traditional volume of consumption^[14,69,70].

Yerba mate production in Brazil reached 618.601 tons in 2022, with a production value of R\$ 846.541,00. The average production yield per hectare in the same year was 8.421 kg, with the state of Paraná being the largest producer of yerba mate in Brazil^[20].

In southern Brazil, yerba mate is traditionally consumed in the form of chimarrão. This drink is prepared by adding hot (not boiling) water to ground yerba mate. Chimarrão is more than just a drink; it is a symbol of hospitality and friendship. Sharing chimarrão in conversation circles is a common practice, representing a moment of social interaction^[71-73].

In regions such as Mato Grosso do Sul and some parts of São Paulo, yerba mate is consumed as tereré, a cold drink. In this form of consumption, yerba mate is prepared in the same way as chimarrão, but the water used is cold and sometimes the water is flavored with fruit juices or herbs. Tereré is associated with a warmer climate and is popular among rural workers and young people. Like chimarrão, tereré also has a strong social component, being shared in groups as a sign of friendship and hospitality^[68,72,74].

Like green tea and coffee, yerba mate is rich in bioactive compounds, including polyphenols (such as chlorogenic acid), xanthines (caffeine, theobromine) and saponins. These compounds have antioxidant,

stimulant and anti-inflammatory properties, contributing to the health benefits associated with yerba mate consumption^[14,72-74].

According to Bracesco *et al.*^[71], the well-known traditional preparations of aqueous mate infusions are drinks of four main types:

- *Chimarrão*: Extract in hot water of dried and crushed green mate leaves;
- Cooked maté: Green mate made as herbal tea, a common commercial product;
- Tererê: Extract in cold water of dried and crushed green mate leaves;
- Mate tea: Leaves dried (roasted) and prepared as herbal tea.

Like green tea and coffee, mate has alkaloids, methylxanthine, caffeine and theobromine, and its consumption is traditionally due to its stimulant properties^[14,71].

In addition to the main yerba mate consumption types mentioned above, the leaves have other diverse industrial applications, such as soluble extracts for beverages, dye, food preservatives and raw material for hygiene and cosmetic products^[69,70].

Several works emphasize the complexity of the chemical composition of yerba mate. There are 2 compounds with the highest concentration among the main active compounds found in the leaves and branches of the plant, they are polyphenols (chlorogenic acid) and xanthines (caffeine, theobromine and theophylline). In addition to these compounds, there are also puric alkaloids (caffeic acid, 3,4-dicapheoylquinic acid, 3,5-dicapheoylquinic acid), flavonoids (quercetin, kaempferol and rutin), amino acids, minerals (P, Fe and Ca), vitamins (A, B1, B2, C and E), as well as cellulose, dextrin, saccharin and gums^[70,75-77].

The infusion of yerba mate with hot water tends to extract bioactive compounds more efficiently, especially polyphenols and xanthines. The high temperature facilitates the release of these compounds, making chimarrão a drink rich in antioxidants and caffeine. Due to the greater extraction of caffeine, chimarrão has a more stimulating effect^[71-74].

In tererê, the extraction of bioactive compounds is less efficient due to the cold temperature of the water used. This can result in a lower concentration of antioxidants and caffeine in the drink. However, this form of consumption still retains a significant amount of compounds, providing health benefits. Tereré tends to be more refreshing and less stimulating compared to chimarrão, due to the lower amount of caffeine extracted^[68,72-74].

Analyzes of the compounds present in *I. paraguariensis* confer several properties of therapeutic value and make it recommendable as a hypocholesterolemic, hepatoprotective, antioxidant, diuretic, digestive, nervous system stimulant, anti-inflammatory, antirheumatic and lipolytic agent, in addition to being indicated in asthenia cases and being an adjunct for treating overweight^[75-77].

Numerous studies on these plants have been conducted to evaluate and confirm the effects and benefits cited in this study. Some of the main health benefits from the consumption of these plants are described in **TABLE 1**.

TABLE 1: Evidence of the effectiveness of *Euterpe oleracea* Martius., *Cinnamomum zeylanicum* Blume, *Paullinia cupana* Kunth, *Hibiscus sabdariffa* DC., *Spilanthes oleracea* L. and *Ilex paraguariensis* A.St.-Hil. plants for health benefits.

Species	Parts of the plant used	Proven health benefits	Publication
<i>Euterpe oleracea</i> Martius. (Açaí)	Fruit (pulp) and seed extract	Antioxidant capacity; Presence of anthocyanins.	[9,23,25,26]
		Vasodilator; Prevents cardiovascular disease; Atherosclerosis.	[78,79]
		Prevents obesity; Steatosis and liver fibrosis.	[80]
		Antimicrobial properties (<i>Staphylococcus aureus</i>); Cytotoxicity against hepatocellular carcinoma cells (HepG2).	[81]
		Antioxidant, anti-inflammatory (NLRP3 inflammasome); Cytotoxic agent against cervical carcinoma.	[30,31]
		Increased gene expression of antioxidant enzymes and lipid metabolism.	[22]
		Activity against seizures and seizure-related oxidative stress.	[82]
		Identification of compounds such as lipids, prenol, isoflavonoids and isoquinolines related to superfoods.	[83]
<i>Cinnamomum zeylanicum</i> Blume (Cinnamon)	Leaves and bark	Antimicrobial activity; Anticancer properties.	[34,38]
		Antioxidant activity; Anti-inflammatory activity; Antimicrobial activity.	[32,35,36,37]
		Phenolic compounds; Alzheimer's disease remediation; Antidiabetic action.	[33,39,40]
		Cardioprotective activity; Antioxidant capacity.	[11]
		Inhibition of aflatoxin B1; Antifungal action against <i>Aspergillus flavus</i> ; Antioxidant capacity.	[84]
		Improved oxidative stability; Hygienic characteristics of meat.	[85]
<i>Paullinia cupana</i> Kunth (Guarana)	Fruit and seeds (extract)	Phenolic compounds; Antimicrobial activity.	[10,41,86]
		Anxiety control; Panic disorders; Antidepressant agent; Improves cognitive and physical abilities.	[48,87,88]
		Anti-inflammatory effects; Antitumor effects; Antioxidant effects; Antimicrobial effects.	[7,44,46,47,89,90]
		Adjuvant in lowering cholesterol and protecting the liver.	[45,91]
		Neuroprotective activity.	[42,43]
<i>Hibiscus sabdariffa</i> DC.		Antioxidant activity;	[53,58,92,93,94]

Species	Parts of the plant used	Proven health benefits	Publication
<i>Spilanthes acmella</i> (L.) Murr. (jambu)	Seeds and calyces (flowers/sepals)	Source of natural pigments (total anthocyanins, cyanidin and delphinidin).	
		Antimicrobial activity against <i>Escherichia coli</i> , <i>Salmonella enteritidis</i> , <i>Staphylococcus aureus</i> and <i>Micrococcus luteus</i>	[50,85]
		Promotes hypoglycemic and hypolipidemic activities; Prevents liver damage in diabetic condition.	[12,52,96]
		Reduction in body weight, total body fat, liver fat; Increase in HDL-C and decrease in alanine aminotransferase.	[55,56,59]
		Inhibition of human colon cancer cells and antioxidant action.	[51]
		Functional foods with antioxidant properties.	[2,60,97]
<i>Ilex paraguariensis</i> A. St.-Hil. (Yerba mate)	Leaves and inflorescences	Antifungal activity; High content of vitamin C, phenolic compounds and flavonoids; Antioxidant activity.	[6,61,64]
		Anti-inflammatory activity; Analgesic activity; Antipyretic activity; Local anesthetic activity; Inhibitory effect on nitric oxide production; Presence of phenolic compounds and tannins.	[13,98,99,100,101]
		Diuretic activity; Anti-obesity (slimming).	[102,103]
		Aphrodisiac action.	[104]
		Antioxidant activity; Compound of caffeine, rutin and quercetin.	[8,75,76,77,105,106,107]
		Decreased levels of glucose and glycosylated proteins; Reduced lipid peroxidation in liver, kidney and brain tissues; Increase in antioxidant enzymes, reduction in non-protein thiols generated by diabetes; Reduction of peripheral neuropathy.	[14,108-113]
	Leaves (extract)	Anti-inflammatory; Anti-cancer; Chemoprevention.	[114-116]
		Cardioprotective.	[117,118]
		Anti-aging; Improve bone health.	[119,120]
		Application to traumatic brain injury.	[121]
		It improves the oxidative stability; Nutritional value and sensory quality in beef.	[122]

Source: elaborated by the authors.

Traditional use of species

Açaí has been traditionally used and consumed for centuries by riverside and indigenous communities in the Amazon. Since the 2000s, açaí has become popular in international markets due to its high content of

anthocyanins, which provide antioxidant properties. In countries such as the US and Brazil, it is widely consumed in the form of smoothies, ice cream, supplements and beauty products^[16,19].

The use of yerba mate is traditional in South American countries, and the Guarani indigenous peoples are the main disseminators of its consumption. Chimarrão (hot infusion) and tereré (cold) are an integral part of the local culture and each country has its own variations in consumption. In Brazil and Argentina, chimarrão is predominant, while in Paraguay, tereré is more common^[68].

The indigenous peoples of the Amazon, especially the Sateré-Mawé, were the first to cultivate and use guarana, which is known for its stimulating effect due to its high caffeine content. It was also used as an aphrodisiac and to combat fatigue. Guarana was incorporated into the energy drink and soft drink industry in Brazil and globally^[5,7,41].

Jambu is widely used in Amazonian cuisine, such as in the traditional dish "tacacá", "pato no tucupi" and "arroz com jambu". Hibiscus, originally from África, is consumed in medicinal teas and in Brazilian northeastern cuisine, in typical dishes of Maranhão cuisine such as "cuxá" and "arroz de cuxá". Cinnamon has been used for centuries in Ásia and África as a spice and medicine^[49,123-125].

Form of exploitation of species

Açaí is largely harvested through sustainable extraction, but there is a growth in monoculture cultivation, especially for export. Some traditional management practices help to preserve the ecosystem, such as the use of agroforestry and consortia^[126].

Yerba mate is grown in agroforestry systems and in commercial monocultures. There is a growing demand for organic yerba mate, which promotes sustainable practices. Although guarana is grown in monocultures, there are also initiatives for organic cultivation and sustainable management, especially by traditional communities. Jambu and cinnamon are grown in traditional systems and on small farms, and hibiscus is widely cultivated in África and Southeast Ásia, on a commercial and domestic scale^[67,123,125,127].

Socio-environmental impacts of species

The expansion of açaí cultivation has contributed to deforestation in some areas of the Amazon. However, sustainable management in floodplain areas helps maintain biodiversity. The export of açaí has brought significant economic benefits to some communities. Local cooperatives that control the production chain are positive examples^[126].

Yerba mate monoculture can result in biodiversity loss. On the other hand, sustainable cultivation in agroforestry systems maintains ecological diversity. Communities that cultivate guarana and yerba mate in family systems tend to receive greater economic returns and maintain traditional practices. The demand for organic and sustainable products has increased these benefits. Overexploitation of jambu and cinnamon can lead to the degradation of forest areas if not managed sustainably. Hibiscus has been promoted in regenerative agriculture systems^[67,123,125,127].

Aromatic and medicinal plants are gaining more and more interest as a source of natural bioactive compounds with potential for use not only in the pharmaceutical and cosmetic industry, but also in the food

industry. The essential oils industry is mainly focused on aromatic and medicinal plant extracts, using different conventional and/or innovative techniques with different impacts on the yield, composition and quality of the final product^[127].

Medicinal plants are important protective foods, rich in nutrients, vitamins and dietary fiber. They are also the source of several natural bioactive/pharmaceutical compounds that provide various health benefits such as antioxidants, anti-cancer, anti-hypertensive and anti-diabetic properties. Many of these bioactive compounds present in vegetables are terpenoids, carotenoids, phenolics, phytosterols, glucosinolates and others^[128].

Conclusions

The six plant species analyzed, açaí, cinnamon, guarana, hibiscus, jambu and yerba mate, demonstrate enormous potential in food, whether as natural products or as ingredients in food formulations. These plants have unique profiles of bioactive compounds, such as polyphenols, flavonoids and caffeine, which provide a range of benefits to human health, including antioxidant, anti-inflammatory and neuroprotective properties.

The integration of these species into functional foods is highly promising, as they not only contribute to the nutritional value of foods, but also improve their sensory characteristics, such as color, aroma and flavor. The use of their extracts or parts, such as fruits, seeds and leaves, has the potential to prevent and treat chronic diseases, such as cardiovascular disease, diabetes and obesity, in addition to promoting general well-being.

The versatility of these plants in different food and industrial applications reinforces their relevance for future research, aiming at the innovation of products that meet the growing demands of consumers for healthier and more functional foods.

Furthermore, the present review can help to guide researchers in choosing plants for future scientific studies based on the data presented. This can generate important information as the basis for possible benefits for the population and thus allow obtaining new consumption alternatives to prevent various diseases.

Financing source

The present work was carried out with the support of the Coordination for the Improvement of Higher Education Personnel (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES) - Brazil – Funding Code 001.

Conflict of interest

The authors declare no conflict of interest.

Acknowledgments

We thank the Coordination for the Improvement of Higher Education Personnel (CAPES; Social Demand Program of Scholarships) for financial support-Financing code 001.

Contributions

Study design: FLF; MSRO; HMAB
Data curation: FLF; MSRO
Data collection: FLF; MSRO; HMAB
Data analysis: FLF; HMAB
Original manuscript writing: FLF; MSRO; HMAB
Review and editing writing: FLF; MSRO; HMAB.

References

1. Grzeszczuk M, Stefaniak A, Meller E, Wysocka G. Mineral composition of some edible flowers. *J Elementol*. 2018; 23(1): 151-162. [<https://doi.org/10.5601/jelem.2017.22.2.1352>].
2. Franzen FL, Oliveira MSR, Menegaes JF, Gusso AP, Silva MN, Richards NSPS. Physico-chemical, microbiological and sensory characteristics of jellies made with rose and hibiscus flowers. *Braz J Dev*. 2020; 6(3): 14828-14845. [<https://doi.org/10.34117/bjdv6n3-377>].
3. Franzen FL, Menegaes JF, Rosa JR, Pigatto GM, Lidório HF, Backes FAAL, *et al.* Antioxidant and antimicrobial activity of edible flower extracts obtained by different extraction methods. *Ensaio Ciênc*. 2021; 25(4): 513-520. [<https://doi.org/10.17921/1415-6938.2021v25n4p513-520>].
4. Stefaniak A, Grzeszczuk ME. Nutritional and biological value of five edible flower species. *Not Bot Horti Agrobo*. 2019; 47(1): 128-134. [<https://doi.org/10.15835/nbha47111136>].
5. Marques LLM, Ferreira EDF, Paula MND, Klein T, Mello JCPD. *Paullinia cupana*: a multipurpose plant-a review. *Rev Bras Farmacogn*. 2019; 29: 77-110. [<https://doi.org/10.1016/j.bjp.2018.08.007>].
6. Pires IV, Silva AE. Caracterização e capacidade antioxidante do jambu (*Spilanthes oleracea* L.) *in natura* procedente do cultivo convencional e de hidroponia. *Braz J Dev*. 2020; 6(10): 74624-74636. [<https://doi.org/10.34117/bjdv6n10-040>].
7. Machado KN, Barbosa AP, De Freitas AA, Alvarenga LF, De Padua RM, Faraco AAG, *et al.* TNF- α inhibition, antioxidant effects and chemical analysis of extracts and fraction from Brazilian guarana seed powder. *Food Chem*. 2021; 355: 129563. [<https://doi.org/10.1016/j.foodchem.2021.129563>].
8. Bruxel F, Rodrigues KF, Gastmann J, Winhelmann MC, Silva SM, Hoehne L, De Freitas EM, *et al.* Phytotoxicity of aqueous extract of *Ilex paraguariensis* A. St.-Hil on *Conyza bonariensis* (L). Cronquist. *Sci Afr J Bot*. 2022; 146: 546-552. [<https://doi.org/10.1016/j.sajb.2021.10.019>].
9. Silva HRD, Assis DDCD, Prada AL, Silva JOC, Sousa MBD, Ferreira AM, *et al.* Obtaining and characterization of anthocyanins from *Euterpe oleracea* (açaí) dry extract for nutraceutical and food preparations. *Rev Bras Farmacogn*. 2019; 29: 677-685. [<https://doi.org/10.1016/j.bjp.2019.03.004>].
10. Aguiar BAA, Bueno FG, Panizzon G, Silva DBD, Athaydes BR, Gonçalves RDCR, *et al.* Chemical analysis of the semipurified extract of *Paullinia cupana* and evaluation of *in vitro* inhibitory effects against *Helicobacter pylori*. *Nat Prod Res*. 2020; 34(16): 2332-2335. [<https://doi.org/10.1080/14786419.2018.1533825>].
11. Sandamali JAN, Hewawasam RP, Jayatilaka KAPW, Mudduwa LKB. *Cinnamomum zeylanicum* Blume (Ceylon cinnamon) bark extract attenuates doxorubicin induced cardiotoxicity in Wistar rats. *Saudi Pharm J*. 2021; 29(8): 820-832. [<https://doi.org/10.1016/j.jps.2021.06.004>].

12. Husin NNA, Balkis BS, Abd Hamid Z, Abd Rahman M, Louis SR, Osman M, et al. Aqueous calyxes extract of Roselle or *Hibiscus sabdariffa* Linn supplementation improves liver morphology in streptozotocin induced diabetic rats. **Arab J Gastroenterol.** 2017; 18: 13-20. [<https://doi.org/10.1016/j.agj.2017.02.001>].
13. Dallazen JL, Maria-Ferreira D, Luz BB, Nascimento AM, Cipriani TR, Souza LM, et al. Pharmacological potential of alkylamides from *Acmella oleracea* flowers and synthetic isobutylalkyl amide to treat inflammatory pain. **Inflammopharmacol.** 2020; 28: 175-186. [<https://doi.org/10.1007/s10787-019-00601-9>].
14. Habtemariam S. **The chemical and pharmacological basis of yerba maté (*Ilex paraguariensis* A. St.-Hil.) as potential therapy for type 2 diabetes and metabolic syndrome. Medicinal foods as potential therapies for type-2 diabetes and associated diseases.** Academic Press. New York: NY; USA; 2019. p. 943-983.
15. Lucas BF, Costa JAV, Brunner TA. Attitudes of consumers toward Spirulina and açaí and their use as food ingredients. **LWT.** 2023; 178: 114600. [<https://doi.org/10.1016/j.lwt.2023.114600>].
16. Silveira JT, Rosa APC, Morais MG, Victoria FN, Costa JAV. An integrative review of Açaí (*Euterpe oleracea* and *Euterpe precatoria*): traditional uses, phytochemical composition, market trends, and emerging applications. **Food Res Inter.** 2023; 113304. [<https://doi.org/10.1016/j.foodres.2023.113304>].
17. Lucas BF, Zambiazi RC, Costa JAV. Biocompounds and physical properties of açaí pulp dried by different methods. **LWT.** 2018; 98: 335-340. [<https://doi.org/10.1016/j.lwt.2018.08.058>].
18. Lucas BF, Guelpa R, Vaihinger M, Brunner T, Costa JAV, Denkel C. Extruded snacks enriched with açaí berry: physicochemical properties and bioactive constituents. **Food Sci Technol.** 2022; 42: e14822. [<https://doi.org/10.1590/fst.14822>].
19. Yamaguchi KKL, Pereira LFR, Lamarão CV, Lima ES, Veiga-Junior VF. Amazon açaí: Chemistry and biological activities: A review. **Food chemistry.** 2015; 179: 137-151. [<https://doi.org/10.1016/j.foodchem.2015.01.055>].
20. Brasil. Instituto Brasileiro de Geografia e Estatística-IBGE. **Produção de Açaí (cultivo) no Brasil.** 2022. [Accessed 21 Ago 2024]. Available in: <https://www.ibge.gov.br/explica/producao-agropecuaria/acaicultivo/br>.
21. De Jesus ALT, Cristianini M, Santos NM, Maróstica Júnior MR. Effects of high hydrostatic pressure on the microbial inactivation and extraction of bioactive compounds from açaí (*Euterpe oleracea* Martius) pulp. **Food Res Int.** 2020; 130: 108856. [<https://doi.org/10.1016/j.foodres.2019.108856>].
22. Barbosa PO, Souza MO, Silva MP, Santos GT, Silva ME, Bermano G, et al. Açaí (*Euterpe oleracea* Martius) supplementation improves oxidative stress biomarkers in liver tissue of dams fed a high-fat diet and increases antioxidant enzymes' gene expression in offspring. **Biomed Pharmacother.** 2021; 139: 111627. [<https://doi.org/10.1016/j.bioph.2021.111627>].
23. Vigano J, De Aguiar AC, Veggi PC, Sanches VL, Rostagno MA, Martinez J. Techno-economic evaluation for recovering phenolic compounds from açaí (*Euterpe oleracea*) by-product by pressurized liquid extraction. **J Supercrit Fluids.** 2022; 179: 105413. [<https://doi.org/10.1016/j.supflu.2021.105413>].
24. Amorim DS, Amorim IS, Chisté RC, Fernandes FAN, Mariutti LRB, Godoy HT, et al. Nonthermal technologies for the conservation of açaí pulp and derived products: A comprehensive review. **Food Res Inter.** 2023; 113575. [<https://doi.org/10.1016/j.foodres.2023.113575>].
25. Garzón GA, Narváez-Cuenca CE, Vincken JP, Gruppen H. Polyphenolic composition and antioxidant activity of açaí (*Euterpe oleracea* Mart.) from Colombia. **Food Chem.** 2017; 217: 364-372. [<https://doi.org/10.1016/j.foodchem.2016.08.107>].

26. Barbosa PO, De Souza MO, Pala D, Freitas RN. Açaí (*Euterpe oleracea* Martius) as an antioxidant. **Pathology**. 2020; 127-133. [<https://doi.org/10.1016/B978-0-12-815972-9.00012-3>].
27. Si LW. Trending foods and beverages. In: **Food Society**. Academic Press. 2020; 305-321. [<https://doi.org/10.1016/B978-0-12-811808-5.00016-7>].
28. Oliveira NKS, Almeida MRS, Pontes FMM, Barcelos MP, Silva CHTP, Rosa JMC, et al. Antioxidant effect of flavonoids present in *Euterpe oleracea* Martius and neurodegenerative diseases: a literature review. **Cent Nerv Syst Agents Med Chem.** 2019; 19 (2): 75-99. [<https://doi.org/10.2174/1871524919666190502105855>].
29. Barros L, Calhelha RC, Queiroz MJR, Santos-Buelga C, Santos EA, Regis WC, et al. The powerful *in vitro* bioactivity of *Euterpe oleracea* Mart. seeds and related phenolic compounds. **Ind Crops Prod.** 2015; 76: 318-322. [<https://doi.org/10.1016/j.indcrop.2015.05.086>].
30. Machado AK, Cadoná FC, Assmann CE, Andreazza AC, Duarte MMMF, Branco CS, et al. Açaí (*Euterpe oleracea* Mart.) has anti-inflammatory potential through NLRP3-inflammasome modulation. **J Funct Foods.** 2019; 56: 364-371. [<https://doi.org/10.1016/j.jff.2019.03.034>].
31. Sharifi-Rad J, Dey A, Koirala N, Shaheen S, El Omari N, Salehi B, et al. *Cinnamomum* species: bridging phytochemistry knowledge, pharmacological properties and toxicological safety for health benefits. **Front Pharmacol.** 2021; 12: 600139. [<https://doi.org/10.3389/fphar.2021.600139>].
32. Mini Raj N, Vikram HC, Muhammed Nissar VA, Nybe EV. Cinnamon and Indian Cinnamon (Indian Cassia). In: **Handbook of Spices in India: 75 Years of Research and Development**. Singapore: Springer Nature Singapore. 2023; 2921-2991. [https://doi.org/10.1007/978-981-19-3728-6_43].
33. Khoshnevisan K, Alipanah H, Baharifar H, Ranjbar N, Osanloo M. Chitosan nanoparticles containing *cinnamomum verum* J. Presl essential oil and cinnamaldehyde: preparation, characterization and anticancer effects against melanoma and breast cancer cells. **Trad Integr Medic.** 2022; 7(1): 1-12. [<https://doi.org/10.18502/tim.v7i1.9058>].
34. Nazareno AM, Purnamasari L, Dela Cruz JF. *In vivo* and *in vitro* anti-diabetic effects of cinnamon (*Cinnamomum* sp.) plant extract: A review. **Canrea J Food Technol Nutr Culin J.** 2022; 5(2): 151–171. [<https://doi.org/10.20956/canrea.v5i2.673>].
35. Labbaci FZ, Belkhodja H, Elkadi FZ, Megharbi A, Belhouala K. HPLC-MS Analysis and evaluation of Antioxidant and Anti-Inflammatory Potential of *Cinnamomum cassia* Extract. **Tropic J Nat Prod Res.** 2023; 7(8): 3637-3642. [<http://www.doi.org/10.26538/tjnpr.v7i8.10>].
36. Gogoi R, Sarma N, Loying R, Pandey Sk, Begum T, Lal M. A comparative analysis of bark and leaf essential oil and their chemical composition, antioxidant, anti-inflammatory, antimicrobial activities and genotoxicity of northeast Indian *Cinnamomum zeylanicum* Blume. **J Nat Prod.** 2021; 11(1): 74-84. [<https://doi.org/10.2174/2210315509666191119111800>].
37. Chuesiang P, Siripatrawan U, Sanguandekul R, Yang JS, McClements DJ, McLandsborough L. Antimicrobial activity and chemical stability of Cinnamon oil in oil-in-water nanoemulsions fabricate during the phase inversion temperature method. **LWT.** 2019; 110: 190-196. [<https://doi.org/10.1016/j.lwt.2019.03.012>].
38. Muhammad DRA, Tuenter E, Patria GD, Foubert K, Pieters L, Dewettinck K. Phytochemical composition and antioxidant activity of *Cinnamomum burmannii* Blume extracts and their potential application in white chocolate. **Food Chem.** 2021; 340: 127983. [<https://doi.org/10.1016/j.foodchem.2020.127983>].
39. Tamfu AN, Kucukaydin S, Ceylan O, Sarac N, Duru ME. Phenolic composition, enzyme inhibitory and anti-quorum sensing activities of cinnamon (*Cinnamomum zeylanicum* Blume) and Basil (*Ocimum basilicum* Linn). **Chem Africa.** 2021; 4: 759–767. [<https://doi.org/10.1007/s42250-021-00265-5>].

40. Marques LLM, Panizzon GP, Aguiar BAA, Simionato AS, Cardozo-Filho L, Andrade G, et al. Guarana (*Paullinia cupana*) seeds: Selective supercritical extraction of phenolic compounds. *Food Chem.* 2016; 212: 703-711. [<https://doi.org/10.1016/j.foodchem.2016.06.028>].
41. Roggia I, Dalcin AJF, De Souza D, Machado AK, De Souza DV, Da Cruz IBM, et al. Guarana: Stability-Indicating RP-HPLC method and safety profile using microglial cells. *J Food Compost Anal.* 2020; 94: 103629. [<https://doi.org/10.1016/j.jfca.2020.103629>].
42. Bittencourt LDS, Zeidán-Chuliá F, Yatsu Fkj, Schnorr CE, Moresco KS, Kolling EA, et al. Guarana (*Paullinia cupana* Mart.) prevents β -amyloid aggregation, generation of advanced glycation-end products (AGEs), and acrolein-induced cytotoxicity on human neuronal-like cells. *Phytother Res.* 2014; 28(11): 1615-1624. [<https://doi.org/10.1002/ptr.5173>].
43. Hertz E, Cadoná FC, Machado AK, Azzolin V, Holmrich S, Assmann C, et al. Effect of *Paullinia cupana* on MCF-7 breast cancer cell response to chemotherapeutic drugs. *Mol Clin Oncol.* 2015; 3(1) 37-43. [<https://doi.org/10.3892/mco.2014.438>].
44. Kober H, Tatsch E, Torbitz VD, Cargnin LP, Sangui MB, Bochi GV, et al. Genoprotective and hepatoprotective effects of Guarana (*Paullinia cupana* Mart. var. *sorbilis*) on CCl₄-induced liver damage in rats. *Drug Chem Toxicol.* 2016; 39(1): 48-52. [<https://doi.org/10.3109/01480545.2015.1020546>].
45. Flores ERS, Dal Berto M, Ranzi AD, Cadoná FC, Machado A, Santos GFF, et al. Effect of guarana extract (*Paullinia cupana*), an amazonian fruit richest in caffeine on human bladder cancer cell line. *Rev Bras Geriat Gerontol.* 2017; 8: 88-102. [<https://doi.org/10.1016/j.jfca.2020.103629>].
46. Krewer CC, Suleiman L, Duarte MMMF, Ribeiro EE, Mostardeiro CP, Montano MAE, et al. Guarana, a supplement rich in caffeine and catechin, modulates cytokines: evidence from human *in vitro* and *in vivo* protocols. *Eur Food Res Technol.* 2014; 239(1): 49-57. [<https://doi.org/10.1007/s00217-014-2182-3>].
47. Schimpl FC, Kiyota E, Mayer JLS, Gonçalves JFC, Silva JF, Mazzafera P. Molecular and biochemical characterization of caffeine synthase and purine alkaloid concentration in guarana fruit. *Phytochemistry.* 2014; 105: 25-36. [<https://doi.org/10.1016/j.phytochem.2014.04.018>].
48. Richardson ML, Arlotta CG. Differential yield and nutrients of *Hibiscus sabdariffa* L. genotypes when grown in urban production systems. *Sci Hortic.* 2021; 288: 110349. [<https://doi.org/10.1016/j.scienta.2021.110349>].
49. Borrás-Linares I, Fernández-Arroyo S, Arráez-Roman D, Palmeros-Suárez PA, Del Val-Díaz R, Andrade-González I, et al. Characterization of phenolic compounds, anthocyanidin, antioxidant and antimicrobial activity of 25 varieties of Mexican Roselle (*Hibiscus sabdariffa*). *Ind Crops Prod.* 2015; 69: 385-394. [<https://doi.org/10.1016/j.indcrop.2015.02.053>].
50. Wang C, Karmakar B, Awwad NS, Ibrahium HA, El-Kott AF, Abdel-Daim MM, Batiha GES, et al. Bio-supported of Cu nanoparticles on the surface of Fe₃O₄ magnetic nanoparticles mediated by *Hibiscus sabdariffa* extract: Evaluation of its catalytic activity for synthesis of pyrano [3, 2-c] chromenes and study of its anti-colon cancer properties. *Arab J Chem.* 2022; 15(6): 103809. [<https://doi.org/10.1016/j.arabjc.2022.103809>].
51. Su N, Li J, Yang L, Hou G, Ye M. Hypoglycemic and hypolipidemic effects of fermented milks with added roselle (*Hibiscus sabdariffa* L.) extract. *J Funct Foods.* 2018; 43: 234-241. [<https://doi.org/10.1016/j.jff.2018.02.017>].
52. Vargas-León EA, Díaz-Batalla L, González-Cruz L, Bernardino-Nicanor A, Castro-Rosas J, Reynoso-Camacho R, et al. Effects of acid hydrolysis on the free radical scavenging capacity and inhibitory activity of the angiotensin converting enzyme of phenolic compounds of two varieties of jamaica (*Hibiscus sabdariffa*). *Ind Crops Prod.* 2018; 116: 201-208. [<https://doi.org/10.1016/j.indcrop.2018.02.044>].

53. Chen JH, Wang CJ, Wang CP, Sheu JY, Lin CL, Lin HH. *Hibiscus sabdariffa* leaf polyphenolic extract inhibits LDL oxidation and foam cell formation involving up-regulation of LXRa/ABCA1 pathway. **Food Chem.** 2013; 141(1): 397-406. [<https://doi.org/10.1016/j.foodchem.2013.03.026>].
54. Chang HC, Peng CH, Yeh DM, Kao ES, Wang CJ. *Hibiscus sabdariffa* extract inhibits obesity and fat accumulation and improves liver steatosis in humans. **Food Funct.** 2014; 5(4): 734-739. [<https://doi.org/10.1039/C3FO60495K>].
55. Adewuyi A, Otuechere CA, Adebayo OL, Oyeka M, Adewole C. Atherogenic index and lipid profiles in albino rats fed with surface modified *Hibiscus sabdariffa* cellulose. **Scient Afric.** 2021; 14: e01025. [<https://doi.org/10.1016/j.sciaf.2021.e01025>].
56. Kaulika N, Febriansah R. **Chemopreventive activity of roselle's hexane fraction against breast cancer by in-vitro and in-silico study.** In: **Third international conference on sustainable innovation 2019–health science and nursing (IcoSIHSN 2019).** Atlantis Press. 2019. 66-71. [<https://doi.org/10.2991/icosihsn-19.2019.16>].
57. El Bayani GF, Marpaung NLE, Simorangkir DAS, Sianipar IR, Ibrahim N, Kartinah NT, et al. Anti-inflammatory effects of *Hibiscus sabdariffa* Linn. on the IL-1 β /IL-1ra ratio in plasma and hippocampus of overtrained rats and correlation with spatial memory. **Kobe J Med Sci.** 2018; 64(2): E73. Available in: [<https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6347049/>].
58. Ojulari OV, Lee SG, Nam JO. Beneficial effects of natural bioactive compounds from *Hibiscus sabdariffa* L. on obesity. **Molecules.** 2019; 24(1): 210. [<https://doi.org/10.3390/molecules24010210>].
59. Agunbiade HO, Fagbemi TN, Aderinola TA. Composition and antioxidant properties of beverages from graded mixture of green/roasted coffee and *Hibiscus sabdariffa* calyx flours. **Appl. Food Res.** 2022; 100163. [<https://doi.org/10.1016/j.afres.2022.100163>].
60. Paulraj J, Govindarajan R, Palpu P. The genus *Spilanthes* ethnopharmacology, phytochemistry, and pharmacological properties: A review. **Adv Pharmacol Sci.** 2013; 2013(1): 510298. Available in: [<https://onlinelibrary.wiley.com/doi/full/10.1155/2013/510298>].
61. Uthpala TGG, Navaratne SB. *Acmella oleracea* plant; identification, applications and use as an emerging food source–review. **Food Rev. Int.** 2021; 37 (4): 399-414. [<https://doi.org/10.1080/87559129.2019.1709201>].
62. Lalthanpui PB, Lalchhandama K. Chemical composition and broad-spectrum anthelmintic activity of a cultivar of toothache plant, *Acmella oleracea*, from Mizoram, India. **Pharm Biol.** 2020; 58(1): 393-399. [<https://doi.org/10.1080/13880209.2020.1760316>].
63. Joshi V, Sharma GD, Jadhav SK. Alkamides: Multifunctional bioactive agents in *Spilanthes* spp. **J Sci Res.** 2020; 64: 198–206. [<https://doi.org/10.37398/JSR.2020.640129>].
64. Barbosa AF, De Carvalho MG, Smith RE, Sabaa-Srur AUO. Spilanthol: Occurrence, extraction, chemistry and biological activities. **Rev Bras Farmacogn.** 2016; 26: 128–133. [<https://doi.org/10.1016/j.bjp.2015.07.024>].
65. Nascimento LES, Arriola NDA, Silva LAL, Faqueti LG, Sandjo LP, Araújo CES, et al. Phytochemical profile of different anatomical parts of jambu (*Acmella oleracea* (L.) R.K. Jansen): A comparison between hydroponic and conventional cultivation using PCA and cluster analysis. **Food Chem.** 2020; 332: 127393. [<https://doi.org/10.1016/j.foodchem.2020.127393>].
66. Nodari E, Gerhardt M. The Uruguay River: A Permeable Border in South America. **Rev Inter Amer Studies.** 2021; 14(1): 201-227. [<https://doi.org/10.31261/rias.10047>].

67. Alves FEDSB, Scheer AP. Yerba mate (*Ilex paraguariensis*), science, technology and health: A systematic review on research, recent advances and possible paths for future studies. **South African J Botany**. 2024; 168: 573-587. [<https://doi.org/10.1016/j.sajb.2024.04.008>].
68. Cardozo Junior EL, Morand C. Interest of mate (*Ilex paraguariensis* A. St.- Hil.) as a new natural functional food to preserve human cardiovascular health - a review. **J Funct Foods**. 2016; 21: 440-454. [<https://doi.org/10.1016/j.jff.2015.12.010>].
69. Cardozo AGL, Rosa RL, Novak RS, Folquitto DG, Schebelski DJ, Brusamarello LCC, et al. Yerba mate (*Ilex paraguariensis* A. St. – hil.): a comprehensive review on chemical composition, health benefits and recent advances. **Res Soc Dev**. 2021; 10(11): e590101120036. [<https://doi.org/10.33448/rsd-v10i11.20036>].
70. Bracesco N, Sanchez AG, Contreras V, Menini T, Gugliucci A. Recent advances on *Ilex paraguariensis* research: minireview. **J Ethnopharmacol**. 2011; 136(3): 378-384. [<https://doi.org/10.1016/j.jep.2010.06.032>].
71. Farias IV, Fratoni E, Theindl LC, Campos AM, Dalmarco EM, Reginatto FH. *In Vitro* Free Radical Scavenging Properties and Anti-Inflammatory Activity of *Ilex paraguariensis* (Maté) and the Ability of Its Major Chemical Markers to Inhibit the Production of Proinflammatory Mediators. **Mediators Inflamm**. 2021; 2021(1): 7688153. [<https://doi.org/10.1155/2021/7688153>].
72. Cogoi L, Marrassini C, Saint Martin EM, Alonso MR, Filip R, Anesini C. Inhibition of Glycation End Products Formation and Antioxidant Activities of *Ilex paraguariensis*: comparative study of fruit and leaves extracts. **J Pharmacopunct**. 2023; 26(4): 338–347. [<https://doi.org/10.3831%2FKPI.2023.26.4.338>].
73. Lutomski P, Gozdziewska M, Florek-Luszczki M. Health properties of yerba mate. **Annals Agric Environ Medic**. 2020; 27(2): 310-313. [<http://dx.doi.org/10.26444/aaem/119994>].
74. Bojić M, Haas VS, Šarić D, Maleš Ž. Determination of flavonoids, phenolic acids, and xanthines in mate tea (*Ilex paraguariensis* St.-Hil.). **J Anal Methods Chem**. 2013; 2013(1): 658596. Available in: [<https://onlinelibrary.wiley.com/doi/full/10.1155/2013/658596>].
75. Braghini F, De Carli CG, Bonsaglia B, Silveira Jr JFS, Oliveira DF, Tramujas J, et al. Composição físico-química de erva-mate, antes e após simulação do chimarrão. **Pesq Agropec Gaúcha**. 2014; 20(1/2): 7-15. Available in: [<https://revistapag.agricultura.rs.gov.br/ojs/index.php/revistapag/article/view/63/48>].
76. Silveira TFF, Meinhart AD, Coutinho JP, Souza TCL, Cunha ECE, Moraes MR, et al. Content of lutein in aqueous extracts of yerba mate (*Ilex paraguariensis* St. Hil). **Food Res Int**. 2016; 82: 165-171. [<https://doi.org/10.1016/j.foodres.2015.12.033>].
77. Barbosa P, Pala D, Silva C, Souza M, Volp AC, Freitas R. P46 Açaí pulp (*Euterpe oleracea* Martius) consumption improves lipidic peroxidation markers in healthy women. **Biochem Pharmacol**. 2017; 139: 141. [<https://doi.org/10.1016/j.bcp.2017.06.047>].
78. Pontes VCB, Tavares JPTM, Rosenstock TR, Rodrigues DS, Yudi MI, Soares JPM, et al. Increased acute blood flow induced by the aqueous extract of *Euterpe oleracea* Mart. fruit pulp in rats *in vivo* is not related to the direct activation of endothelial cells. **J Ethnopharmacol**. 2021; 271: 113885. [<https://doi.org/10.1016/j.jep.2021.113885>].
79. Romão MH, De Bem GF, Santos IB, Soares RA, Ognibene DT, Moura RS, et al. Açaí (*Euterpe oleracea* Mart.) seed extract protects against hepatic steatosis and fibrosis in high-fat diet-fed mice: Role of local renin-angiotensin system, oxidative stress and inflammation. **J Funct Foods**. 2020; 65: 103726. [<https://doi.org/10.1016/j.jff.2019.103726>].
80. Dias-Souza MV, Dos Santos RM, Cerávolo IP, Cosenza G, Marçal PHF. *Euterpe oleracea* pulp extract: Chemical analyses, antibiofilm activity against *Staphylococcus aureus*, cytotoxicity and interference on the

- activity of antimicrobial drugs. **Microb Pathog.** 2018; 114: 29-35. [<https://doi.org/10.1016/j.micpath.2017.11.006>].
81. Souza-Monteiro JR, Hamoy M, Santana-Coelho D, Arrifano GP, Paraense RS, Costa-Malaquias A, et al. Anticonvulsant properties of *Euterpe oleracea* in mice. **Neurochem Int.** 2015; 90: 20-27. [<https://doi.org/10.1016/j.neuint.2015.06.014>].
82. Di Ottavio F, Gauglitz JM, Ernst M, Panitchpakdi MW, Fanti F, Compagnone D, et al. A UHPLC-HRMS based metabolomics and chemoinformatics approach to chemically distinguish 'super foods' from a variety of plant-based foods. **Food Chem.** 2020; 313: 126071. [<https://doi.org/10.1016/j.foodchem.2019.126071>].
83. Kiran S, Kujur A, Prakash B. Assessment of preservative potential of *Cinnamomum zeylanicum* Blume essential oil against food borne molds, aflatoxin B1 synthesis, its functional properties and mode of action. **Innov Food Sci Emerg Technol.** 2016; 37: 184-191. [<https://doi.org/10.1016/j.ifset.2016.08.018>].
84. Ranucci D, Branciari R, Cobellis G, Acuti G, Miraglia D, Olivieri O, et al. Dietary essential oil mix improves oxidative stability and hygienic characteristics of lamb meat. **Small Rumin Res.** 2019; 175: 104-109. [<https://doi.org/10.1016/j.smallrumres.2019.04.012>].
85. Matsuura E, Godoy JSR, Bonfim-Mendonça PS, Mello JCP, Svidzinski TIE, Gasparetto A, et al. *In vitro* effect of *Paullinia cupana* (guarana) on hydrophobicity, biofilm formation, and adhesion of *Candida albicans* to polystyrene, composites, and buccal epithelial cells. **Arch Oral Biol.** 2015; 60: 471-478. [<https://doi.org/10.1016/j.archoralbio.2014.05.026>].
86. Rangel MP, De Mello JCP, Audi EA. Evaluation of neurotransmitters involved in the anxiolytic and panicolytic effect of the aqueous fraction of *Paullinia cupana* (guarana) in elevated T maze. **Rev Bras Farmacogn.** 2013; 23(2): 358-365. [<https://doi.org/10.1590/S0102-695X2013005000024>].
87. Silva GS, Canuto KM, Ribeiro PRV, De Brito ES, Nascimento MM, Zocolo GJ, et al. Chemical profiling of guarana seeds (*Paullinia cupana*) from different geographical origins using UPLC-QTOF-MS combined with chemometrics. **Food Res Int.** 2017; 102: 700-709. [<https://doi.org/10.1016/j.foodres.2017.09.055>].
88. Cadoná FC, Rosa JL, Schneider T, Cubillos-Rojas M, Sánchez-Tena S, Azzolin VF, et al. Guarana, a highly caffeinated food, presents *in vitro* antitumor activity in colorectal and breast cancer cell lines by inhibiting AKT/mTOR/S6K and MAPKs pathways. **Nutr Cancer.** 2017; 69(5): 800-810. [<https://doi.org/10.1080/01635581.2017.1324994>].
89. Póltorak A, Marcinkowska-Lesiak M, Lendzion K, Moczkowska M, Onopiuk A, Wojtasik-Kalinowska I, et al. Evaluation of the antioxidant, anti-inflammatory and antimicrobial effects of catuaba, galangal, roseroot, maca root, guarana and polyfloral honey in sausages during storage. **LWT.** 2018; 96: 364-370. [<https://doi.org/10.1016/j.lwt.2018.05.035>].
90. Portella RDL, Barcelos RP, Rosa EJF, Ribeiro EE, Cruz IBM, Suleiman L, et al. Guarana (*Paullinia cupana* Kunth) effects on LDL oxidation in elderly people: an *in vitro* and *in vivo* study. **Lipids Health Dis.** 2013; 12(1): 1-9. [<https://doi.org/10.1186/1476-511X-12-12>].
91. Frimpong G, Adotey J, Ofori-Kwakye K, Kipo SL, Dwomo-Fokuo Y. Potential of aqueous extract of *Hibiscus sabdariffa* calyces as colouring agent in three paediatric oral pharmaceutical formulations. **J Appl Pharm Sci.** 2014; 4(12): 001-007. [<https://dx.doi.org/10.7324/JAPS.2014.41201>].
92. Wang J, Cao X, Jiang H, Qi Y, Chin KL, Yue Y. Antioxidant activity of leaf extracts from different *Hibiscus sabdariffa* accessions and simultaneous determination five major antioxidant compounds by LC-Q-TOF-MS. **Molecules.** 2014; 19(12): 21226-21238. [<https://doi.org/10.3390/molecules19122126>].
93. Huang HC, Chang WT, Wu YH, Yang BC, Xu MR, Lin MK, et al. Phytochemicals levels and biological activities in *Hibiscus sabdariffa* L. were enhanced using microbial fermentation. **Ind Crops Prod.** 2022; 176: 114408. [<https://doi.org/10.1016/j.indcrop.2021.114408>].

94. Higginbotham KL, Burris KP, Zivanovic S, Davidson PM, Stewart Jr CN. Aqueous extracts of *Hibiscus sabdariffa* calyces as an antimicrobial rinse on hot dogs against *Listeria monocytogenes* and methicillin-resistant *Staphylococcus aureus*. **Food Control.** 2014; 40: 274-277. [\[https://doi.org/10.1016/j.foodcont.2013.12.011\]](https://doi.org/10.1016/j.foodcont.2013.12.011).
95. Nafizah AHN, Budin SB, Santhana RL, Osman M, Hanis MIM, Jamaludin M. Aqueous calyces extract of Roselle or *Hibiscus sabdariffa* Linn supplementation improves liver morphology in streptozotocin induced diabetic rats. **Arab J Gastroenterol.** 2017; 18(1): 13-20. [\[https://doi.org/10.1016/j.ajg.2017.02.001\]](https://doi.org/10.1016/j.ajg.2017.02.001).
96. Ogundele OM, Awolu OO, Badejo AA, Nwachukwu ID, Fagbemi TN. Development of functional beverages from blends of *Hibiscus sabdariffa* extract and selected fruit juices for optimal antioxidant properties. **Food Sci Nutr.** 2016; 4(5): 679-685. [\[https://doi.org/10.1002/fsn3.331\]](https://doi.org/10.1002/fsn3.331).
97. Chakraborty A, Devi RKB, Rita S, Sharatchandra KH, Singh TI. Preliminary studies on anti-inflammatory and analgesic activities of *Spilanthes acmella* in experimental animal models. **Indian J Pharmacol.** 2004; 36(3): 148-150. Available in: [\[https://journals.lww.com/iph/fulltext/2004/36030/preliminary_studies_on_antiinflammatory_and.4.aspx\]](https://journals.lww.com/iph/fulltext/2004/36030/preliminary_studies_on_antiinflammatory_and.4.aspx).
98. Ley JP, Krammer G, Looft J, Reinders G, Bertram HJ. Structure-activity relationships of trigeminal effects for artificial and naturally occurring alkamides related to spilanthol. In: **Dev Food Sci.** Elsevier. 2006; 43: 21-24. [\[https://doi.org/10.1016/S0167-4501\(06\)80006-3\]](https://doi.org/10.1016/S0167-4501(06)80006-3).
99. Wu LC, Fan NC, Lin MH, Chu IR, Huang SJ, Hu CY, et al. Anti-inflammatory effect of spilanthol from *Spilanthes acmella* on murine macrophage by down-regulating LPS-induced inflammatory mediators. **J Agric Food Chem.** 2008; 56 (7): 2341-2349. Available in: [\[https://pubs.acs.org/doi/full/10.1021/jf073057e\]](https://pubs.acs.org/doi/full/10.1021/jf073057e).
100. Chakraborty A, Devi RKB, Sanjebam R, Khumbong S, Thokchom IS. Preliminary studies on local anesthetic and antipyretic activities of *Spilanthes acmella* Murr. in experimental animals models. **Indian J Pharmacol.** 2010; 42(5): 277-279. [\[https://doi.org/10.4103/0253-7613.70106\]](https://doi.org/10.4103/0253-7613.70106).
101. Ratnasoorya WD, Pieris KPP, Samaratunga U, Jayakody JRAC. Diuretic activity of *Spilanthes acmella* flowers in rats. **J Ethnopharmacol.** 2004; 91: 317-320. [\[https://doi.org/10.1016/j.jep.2004.01.006\]](https://doi.org/10.1016/j.jep.2004.01.006).
102. Ekanem AP, Wang M, Simon JE, Moreno DA. Antidiabetic properties of two African plants (*Afromomum melegueta* and *Spilanthes acmella*) by pancreatic lipase inhibition. **Phytother Res.** 2007; 21(12): 1253-1255. [\[https://doi.org/10.1002/ptr.2239\]](https://doi.org/10.1002/ptr.2239).
103. Sharma V, Boonen J, Chauhan NS, Thakur M, Spiegeleer BDE, Dixit VK. *Spilanthes acmella* ethanolic flower extract: LC-MS alkylamide profiling and its effects on sexual behavior in male rats. **Phytomedicine.** 2011; 18(13) 1161-1169. [\[https://doi.org/10.1016/j.phymed.2011.06.001\]](https://doi.org/10.1016/j.phymed.2011.06.001).
104. Anesini C, Turner S, Cogoi L, Filip R. Study of the participation of caffeine and polyphenols on the overall antioxidant activity of mate (*Ilex paraguariensis*). **LWT-Food Science and Technol.** 2012; 45(2): 299-304. [\[https://doi.org/10.1016/j.lwt.2011.06.015\]](https://doi.org/10.1016/j.lwt.2011.06.015).
105. Peres RG, Tonin FG, Tavares MF, Rodriguez-Amaya DB. HPLC-DAD-ESI/MS identification and quantification of phenolic compounds in *Ilex paraguariensis* beverages and on-line evaluation of individual antioxidant activity. **Molecules.** 2013; 18(4): 3859-3871. [\[https://doi.org/10.3390/molecules18043859\]](https://doi.org/10.3390/molecules18043859).
106. Blum-Silva CH, Chaves VC, Schenkel EP, Coelho GC, Reginatto FH. The influence of leaf age on methylxanthines, total phenolic content, and free radical scavenging capacity of *Ilex paraguariensis* aqueous extracts. **Rev Bras Farmacogn.** 2015; 25: 1-6. [\[https://doi.org/10.1016/j.bjp.2015.01.002\]](https://doi.org/10.1016/j.bjp.2015.01.002).
107. Brasilino MS, Pereira AAF, Zepponi KMC, Chaves Neto AHC, Carvalho AAF, Nakamune ACDMS. Erva mate minimiza as alterações do perfil lipídico promovidas por elevado consumo de sacarose. **Arch Health Investig.** 2013; 2(5). Available in: [\[https://archhealthinvestigation.emnuvens.com.br/ArcHI/article/view/310\]](https://archhealthinvestigation.emnuvens.com.br/ArcHI/article/view/310).

108. Fagundes A, Danguy LB, Schmitt V, Mazur CE. *Ilex paraguariensis*: bioactive compounds and nutritional properties in health. *Rev Bras Obes Nutr Emagrec.* 2015; 9(53): 213-223. Available in: [\[https://link.gale.com/apps/doc/A531171232/AONE?u=unicamp_br&sid=googleScholar&xid=7b9055bc\]](https://link.gale.com/apps/doc/A531171232/AONE?u=unicamp_br&sid=googleScholar&xid=7b9055bc).
109. Pereira DF, Kappel VD, Cazarolli LH, Boligon AA, Athayde ML, Guesser SM, et al. Influence of the traditional Brazilian drink *Ilex paraguariensis* tea on glucose homeostasis. *Phytomedicine.* 2012; 19(10): 868-877. [\[https://doi.org/10.1016/j.phymed.2012.05.008\]](https://doi.org/10.1016/j.phymed.2012.05.008).
110. Gambero A, Ribeiro ML. The positive effects of yerba maté (*Ilex paraguariensis*) in obesity. *Nutrients.* 2015; 7(2): 730-750. [\[https://doi.org/10.3390/nu7020730\]](https://doi.org/10.3390/nu7020730).
111. Rocha DS, Casagrande L, Model JFA, Dos Santos JT, Hoefel AL, Kucharski LC. Effect of yerba mate (*Ilex paraguariensis*) extract on the metabolism of diabetic rats. *Biomed Pharmacother.* 2018; 105: 370-376. [\[https://doi.org/10.1016/j.biopha.2018.05.132\]](https://doi.org/10.1016/j.biopha.2018.05.132).
112. Lima ME, Colpo AZC, Rosa H, Salgueiro ACF, Silva MP, Noronha DS, et al. *Ilex paraguariensis* extracts reduce blood glucose, peripheral neuropathy and oxidative damage in male mice exposed to streptozotocin. *J Funct Foods.* 2018; 44: 9-16. [\[https://doi.org/10.1016/j.jff.2018.02.024\]](https://doi.org/10.1016/j.jff.2018.02.024).
113. Mejía EG, Song YS, Heck CI, Ramírez-Mares M. Yerba mate tea (*Ilex paraguariensis*): Phenolics, antioxidant capacity and *in vitro* inhibition of colon cancer cell proliferation. *J Funct Foods.* 2010; 2(1): 23-34. [\[https://doi.org/10.1016/j.jff.2009.12.003\]](https://doi.org/10.1016/j.jff.2009.12.003).
114. Arçari DP, Bartchewsky Jr. W, Santos TW, Oliveira KA, Oliveira CC, Gotardo EM, et al. Anti-inflammatory effects of yerba maté extract (*Ilex paraguariensis*) ameliorate insulin resistance in mice with high fat diet-induced obesity. *Molec Cell Endocrinol.* 2011; 335(2): 110-115. [\[https://doi.org/10.1016/j.mce.2011.01.003\]](https://doi.org/10.1016/j.mce.2011.01.003).
115. Puangpraphant S, Dia VP, De Mejia EG, Garcia G, Berhow MA, Wallig MA. Yerba mate tea and mate saponins prevented azoxymethane-induced inflammation of rat colon through suppression of NF-κB p65ser³¹¹ signaling via IκB-α and GSK-3β reduced phosphorylation. *Biofactors.* 2013; 39(4): 430-440. [\[https://doi.org/10.1002/biof.1083\]](https://doi.org/10.1002/biof.1083).
116. Yu S, Wei SY, Liu Z, Zhang T, Xiang N, Fu H. Yerba mate (*Ilex paraguariensis*) improves microcirculation of volunteers with high blood viscosity: A randomized, double blind, placebo-controlled trial. *Exp Gerontol.* 2015; 62: 14-22. DOI: [\[https://doi.org/10.1016/j.exger.2014.12.016\]](https://doi.org/10.1016/j.exger.2014.12.016).
117. Veiga DTA, Bringhenti R, Copes R, Tatsch E, Moresco RN, Comim FV, et al. Protective effect of yerba mate intake on the cardiovascular system: a post hoc analysis study in postmenopausal women. *Braz J Med Biol Res.* 2018; 51(6): e7253. [\[https://doi.org/10.1590/1414-431X20187253\]](https://doi.org/10.1590/1414-431X20187253).
118. Xu GH, Kim YH, Choo SJ, Ryoo IJ, Yoo JK, Ahn JS, et al. Chemical constituents from the leaves of *Ilex paraguariensis* inhibit human neutrophil elastase. *Arch Pharm Res.* 2009; 32(9): 1215-1220. [\[https://doi.org/10.1007/s12272-009-1905-7\]](https://doi.org/10.1007/s12272-009-1905-7).
119. Conforti AS, Gallo ME, Saraví FD. Yerba Mate (*Ilex paraguariensis*) consumption is associated with higher bone mineral density in postmenopausal women. *Bone.* 2012; 50(1): 9-13. [\[https://doi.org/10.1016/j.bone.2011.08.029\]](https://doi.org/10.1016/j.bone.2011.08.029).
120. Ribeiro MC, Santos Â, Riachi LG, Rodrigues ACB, Coelho GC, Marcellini PS, et al. The effects of roasted yerba mate (*Ilex paraguariensis* A. ST. Hil.) consumption on glycemia and total serum creatine phosphokinase in patients with traumatic brain injury. *J Funct Foods.* 2017; 28: 240-245. [\[https://doi.org/10.1016/j.jff.2016.11.024\]](https://doi.org/10.1016/j.jff.2016.11.024).
121. Zawadzki A, Arrivetti LO, Vidal MP, Catai JR, Nassu RT, Tullio RR, Cardoso DR, et al. Mate extract as feed additive for improvement of beef quality. *Food Res Int.* 2017; 99: 336-347. [\[https://doi.org/10.1016/j.foodres.2017.05.033\]](https://doi.org/10.1016/j.foodres.2017.05.033).

122. Jose AJ, Leela NK, Zachariah TJ, Rema J. Evaluation of coumarin content and essential oil constituents in *Cinnamomum cassia* (Nees & T. Nees) J. Presl. **J Spices Arom Crops.** 2019; 28(1): 43–51. [<https://doi.org/10.25081/josac.2019.v28.i1.5743>].
123. Ferreira ACA, Souza PA. Aspectos nutricionais do jambu, *Acmeella oleracea*: uma revisão bibliográfica. In: **Ciênc Aliment Pesq Aplic.** Editora Poisson. 2023; 1. [<https://doi.org/10.36229/978-65-5866-376-8>].
124. Talaat SM. Role of Cinnamon Supplementation on Glycemic Markers, Lipid Profile and Weight Status in Patients with Type II Diabetes. **ARO-The Scient J Koya Univ.** 2023; 11 (1): 1-9. [<https://doi.org/10.14500/aro.11041>].
125. Araujo ECG, Silva TC, Cunha Neto EM, Favarin JAS, Silva JKG, Chagas KPT, Maia E, et al. Bioeconomy in the Amazon: Lessons and gaps from thirty years of non-timber forest products research. **J Environ Manag.** 2024; 370: 122420. [<https://doi.org/10.1016/j.jenvman.2024.122420>].
126. Silva LN, Oliveira EC, Baratto LC. Amazonian useful plants described in the book “Le Pays des Amazones” (1885) of the Brazilian propagandist Baron de Santa-Anna Nery: a historical and ethnobotanical perspective. **J Ethnobiol Ethnomed.** 2024; 20(1): 26. [<https://doi.org/10.1186/s13002-024-00663-2>].
127. Skendi A, Irakli M, Chatzopoulou P, Bouloumpasi E, Biliaderis CG. Phenolic extracts from solid wastes of the aromatic plant essential oil industry: Potential uses in food applications. **Food Chem Adv.** 2022; 1: 100065. [<https://doi.org/10.1016/j.focha.2022.100065>].
128. Ağagündüz D, Şahin TÖ, Yilmaz B, Ekinci KD, Duyar Özer Ş, Capasso R. Cruciferous vegetables and their bioactive metabolites: from prevention to novel therapies of colorectal cancer. **Evid Based Compl Altern Med.** 2022; 2022(1): 1534083. [<https://doi.org/10.1155/2022/1534083>].

Histórico do artigo | Submissão: 06/02/2024 | Aceite: 23/10/2024

Como citar este artigo: Franzen FL, Oliveira MSR, Bolini HMA. A review of six medicinal and aromatic plants and their health benefits. **Rev Fitos.** Rio de Janeiro. 2025; 19(1): e1667. e-ISSN 2446-4775. Disponível em: <<https://doi.org/10.32712/2446-4775.2025.1667>>. Acesso em: dd/mm/aaaa.

Licença CC BY 4.0: Você está livre para copiar e redistribuir o material em qualquer meio; adaptar, transformar e construir sobre este material para qualquer finalidade, mesmo comercialmente, desde que respeitado o seguinte termo: dar crédito apropriado e indicar se alterações foram feitas. Você não pode atribuir termos legais ou medidas tecnológicas que restrinjam outros autores de realizar aquilo que esta licença permite.

