Therapeutic properties and structural characterization of steroidal saponins: a review

Gabriela Moysés Pereira
OrcID
Maria de Fátima Simão Jucá Cruz
OrcID

    Gabriela Moysés Pereira

    Federal University of Rio de Janeiro (UFRJ), Health Sciences Center (CCS), Natural Products Research Institute (IPPN), Av. Carlos Chagas Filho, 373 - Bloco H, Cidade Universitária, Ilha do Governador, CEP 21941-599, Rio de Janeiro, RJ, Brazil.

    OrcID https://orcid.org/0000-0002-0307-1547

    Graduated in industrial chemistry from the Federal Rural University of Rio de Janeiro, she has a master's and doctorate in Chemistry of Natural Products from the Federal University of Rio de Janeiro - Natural Products Research Institute, where she worked conducting research in the field of phytochemistry, focusing on Investigation of Active Principles in Medicinal Plants. She has experience in Nuclear Magnetic Resonance (NMR), chromatographic techniques and biological assays in vivo and in vitro.

    Maria de Fátima Simão Jucá Cruz

    Federal University of Rio de Janeiro (UFRJ), Health Sciences Center (CCS), Natural Products Research Institute (IPPN), Av. Carlos Chagas Filho, 373 - Bloco H, Cidade Universitária, Ilha do Governador, CEP 21941- 599, Rio de Janeiro, RJ, Brazil.

    OrcID https://orcid.org/0000-0002-6611-3388

    With a bachelor's degree in chemistry and industrial chemistry from the Federal Rural University of Rio de Janeiro, she has a master's and doctorate in Chemistry of Natural Products from the Federal University of Rio de Janeiro - Natural Products Research Institute, where she worked developing research in the field of phytochemistry, having focusing on the Investigation of Active Principles in Medicinal Plants. She has experience in Nuclear Magnetic Resonance (NMR), chromatographic techniques and biological assays in vivo and in vitro.


Keywords

Steroidal saponins
Active principles
Structural characterization
Therapeutic properties

Abstract

Medicinal plants are sources of bioactive substances that can act to maintain human health. Among the compounds widely distributed in medicinal plants, there are steroidal saponins, an important class of secondary metabolites that are characterized as the active principle of these natural products. The structure of steroidal saponins is composed of a steroidal aglycone covalently linked to portions of carbohydrates and due to the complexity of its structure, the structural characterization processes are laborious. Steroidal saponins have been investigated over the years, due to their potent therapeutic properties such as antimicrobial, anti-inflammatory and cytotoxic. In this work were summarized the studies found in the scientific literature in the last two decades, about the investigation of the therapeutic properties and structural characterization of the steroidal saponins. Furthermore, recent studies have suggested that some saponins like candidates for the treatment of patients with Coronavirus disease (COVID-19). Studies on steroidal saponins are of great importance, as they can be potent therapeutic agents.

References

  1. Sparg SG, Light ME, Staden JV. Biological activities and distribution of plant saponins. J Ethnopharmacol. 2004; 94: 219-243. ISSN 0378-874. [CrossRef].
  2. Vincken JP, Heng L, Groot A, Gruppen H. Saponins, classification and occurrence in the plant kingdom. Phytochemistry. 2007; 68: 275-297. ISSN 0031-9422. [CrossRef].
  3. Wang Y, Gao W, Li X, Wei J, Jing S, Xiao P. Chemotaxonomic study of the genus Paris based on steroidal saponins. Biochem System Ecol. 2013; 48: 163-173. ISSN 0305-1978. [CrossRef].
  4. Oleszek WA. Chromatographic determination of plant saponins. J Chromatogr A. 2002; 967: 147-162. ISSN 0021-9673. [CrossRef].
  5. Francis G, Kerem Z, Makkar HPS, Becker K. The biological action of saponins in animal systems: a review. British J Nutr. 2002; 88: 587-605. ISSN 1475-2662 [PubMed].
  6. Skhirtladze A, Plaza A, Montoro P, Benidze M, Kemertelidze E, Pizza C et al. Furostanol saponins from Yucca gloriosa L. rhizomes. Biochem System Ecol. 2006; 34: 809-814. ISSN 0305-1978. [CrossRef].
  7. Lanzotti V, Barile E, Antignani V, Bonanomi G, Scala F. Antifungal saponins from bulbs of garlic, Allium sativum L. var. Voghiera. Phytochemistry. 2012; 78: 126-134. ISSN 0031-9422. [CrossRef].
  8. Zhou LB, Chen DF. Steroidal saponins from the roots of Asparagus filicinus. Steroids. 2008; 73: 83-87. ISSN 0039-128X. [CrossRef].
  9. Liu X, Zhang H, Niu XF, Xin W, Qi L. Steroidal saponins from Smilacina japonica. Fitoterapia. 2012; 83: 812-816. ISSN 0367-326X. [CrossRef].
  10. Dewick PM. Medicinal natural products: a biosynthetic approach. 2nd Ed. West Sussex: Wiley; 2002. ISBN 9780470741672.
  11. Geyter E, Lambert E, Geelen D, Smagghe G. Novel Advances with Plant Saponins as Natural Insecticides to Control Pest Insects. Pest Technol. 2007; 1(2): 96-105. [Link].
  12. Arthan D, Kittakoop P, Esen A, Svasti J. Furostanol glycoside 26-O-b-glucosidase from the leaves of Solanum torvum. Phytochemistry 2006; 67: 27-33. ISSN 0031-9422. [CrossRef].
  13. Li X, Jing S, Man S, Li X, Zhao C, Wang Y et al. A new acetylated spirostanol saponin and other constituents from the rhizomes of Dioscorea althaeoides R. Knuth (Dioscoreaceae). Biochem System Ecol. 2016; 65: 17-22. ISSN 0305-1978. [CrossRef].
  14. Bernardo RR, Pinto AV, Parente JP. Steroidal saponins from smilax officinalis. Phytochemistry 1996; 43(2): 465-469. ISSN 0031-9422. [CrossRef].
  15. Antunes AS, Silva BP, Parente JP, Valente AP. A New Bioactive Steroidal Saponin from Sansevieria cylindrica. Phytot Res. 2003; 17: 179-182. ISSN 1099-1573. [PubMed].
  16. Ohtsuki T, Sato M, Koyano T, Kowithayakorn T, Kawahara N, Yukihiro G et al. Steroidal saponins from Calamus insignis and their cell growth and cell cycle inhibitory activities. Bioorg Med Chem. 2006; 14: 659-665. ISSN 0968-0896. [CrossRef].
  17. Carotenuto A, Fattorusso E, Lanzotti V, Magno S, De Feo V, Carnuccio R et al. Porrigenins A and B, novel cytotoxic and Antiproliferative Sapogenins Isolated from Allium porrum. J Nat Prod. 1997; 60(10): 1003-1007. ISSN 1520-6025. [CrossRef].
  18. Agrawal PK. Dependence of 1H NMR chemical shifts of geminal protons of glycosyloxy methylene (H2-26) on the orientation of the 27-methyl group of furostane-type steroidal saponins. Magn Resonan Chem. 2004; 42: 990-993. ISSN 1097-458X. [CrossRef].
  19. Mostafa A, Sudisha J, El-Sayed M, Ito SI, Tsuyoshi IT, Yamauchi N et al. Aginoside saponin, a potent antifungal compound, and secondary metabolite analyses from Allium nigrum L. Phytochem Letters. 2013; 6: 274-280. ISSN 1874-3900. [CrossRef].
  20. Sadeghi M, Zolfaghari B, Senatore M, Lanzotti V. Spirostane, furostane and cholestane saponins from Persian leek with antifungal activity. Food Chem. 2013; 141: 1512-1521. ISSN 0308-8146. [CrossRef].
  21. Sautour M, Miyamoto T, Lacaille-Dubois MA. Steroidal saponins and flavan-3-ol glycosides from Dioscorea villosa. Biochem System Ecology. 2006; 34(1). ISSN 0305-1978. [CrossRef].
  22. Cho J, Choi H, Lee J, Kim M-S, Sohn H-Y, Lee DG. The antifungal activity and membrane-disruptive action of dioscin extracted from Dioscorea nipponica. Biochim Biophy Acta. 2013; 1828: 1153-1158. ISSN 0005-2736. [CrossRef].
  23. Qin X-J, Sun D-J, Ni W, Chen C-X, Hua Y, He L et al. Steroidal saponins with antimicrobial activity from stems and leaves of Paris polyphylla var. yunnanensis. Steroids. 2012; 77: 1242-1248. ISSN 0039-128X. [CrossRef].
  24. Fouedjou RT, Teponno RB, Quassinti L, Bramucci M, Petrelli D, Vitali LA et al. Steroidal saponins from the leaves of Cordyline fruticosa (L.) A. Chev. and their cytotoxic and antimicrobial activity. Phytochem Letters. 2014; 7: 62-68. ISSN 1874-3900. [CrossRef].
  25. Shao B, Guo H, Cui Y, Ye M, Jian HJ, Guo D. Steroidal saponins from Smilax china and their anti-inflammatory activities. Phytochemistry. 2007; 68: 623-630. ISSN 0031-9422. [CrossRef].
  26. Sun Z-Y, Zuo S-Q, Yang X, Lan J-H, Liu C-X, Guo Z-Y et al. Aspidsaponins E-H, Four new steroidal saponins from the rhizomes of Aspidistra elatior Blume and their anti-inflammatory activity. Phytochem Letters. 2019; 34: 68-73. ISSN 1874-3900. [CrossRef].
  27. Adão CR, Silva BP, Parente JP. A new steroidal saponin from Allium ampeloprasum var. porrum with anti-inflammatory and gastroprotective effects. Phytochem Letters. 2011; 4: 306-310. ISSN 1874-3900. [CrossRef].
  28. Silva BP, Sousa AC, Silva GM, Mendes TP, Parente JP. A New Bioactive Steroidal Saponin from Agave attenuata. Zeitschrift für Naturforschugn 2002; 57c: 423-428. ISSN 0939-507. [CrossRef].
  29. Silva BP, Parente JP. A New Bioactive Steroidal Saponin from Agave brittoniana. Zeitschrift für Naturforschugn. 2007; 62b: 1193-1198. ISSN 0939-507. [Link].
  30. Wang W, Imeng H. Cytotoxic, anti-inflammatory and hemostatic spirostane-steroidal saponins from the ethanol extract of the roots of Bletilla striata. Fitoterapia. 2015; 101: 2-18. ISSN 0367-326X. [CrossRef].
  31. Rezgui A, Mitaine-Offer A-C, Paululat T, Delemasure S, Patrick Dutartre P, Lacaille-Dubois M-A. Cytotoxic steroidal glycosides from Allium flavum. Fitoterapia. 2014; 93: 121-125. ISSN 0367-326X. [CrossRef].
  32. Li N, Zhang L, Zeng K-W, Zhou Y, Zhang J-Y, Che Y-Y et al. Cytotoxic steroidal saponins from Ophiopogon japonicus. Steroids. 2013; 78: 1-7. ISSN 0039-128X. [CrossRef].
  33. Yang Y-J, Pang X, Wang B, Yang J, Chen X-J, Sun X-G et al. Steroidal saponins from Trillium tschonoskii rhizomes and their cytotoxicity against HepG2 cells. Steroids. 2020; 156: 1-7. ISSN 0039-128X. [CrossRef].
  34. Tong Q-Y, He Y, Zhao Q-B, Qing Y, Huang W, Wu X-H. Cytotoxicity and apoptosis-inducing effect of steroidal saponins from Dioscorea zingiberensis Wright against cancer cells. Steroids. 2012; 77: 1219-1227. ISSN 0039-128X. [CrossRef].
  35. Yokosuka A, Mimaki Y. Steroidal saponins from the whole plants of Agave utahensis and their cytotoxic activity. Phytochemistry. 2009; 70: 807-815. ISSN 0031-9422. [CrossRef].
  36. Yokosuka A, Mimaki Y, Sashida Y. Spirostanol saponins from the rhizomes of Tacca chantrieri and their cytotoxic activity. Phytochemistry. 2002; 61: 73-78. ISSN 0031-9422. [CrossRef].
  37. Timité G, Mitaine-Offer A-C, Miyamoto T, Tanaka C, Mirjolet J-F, Duchamp O et al. Structure and cytotoxicity of steroidal glycosides from Allium schoenoprasum. Phytochemistry. 2013; 88: 61-66. ISSN 0031-9422. [CrossRef].
  38. Hernández JC, León F, Quintana J, Estévez F. Bermejo J. Icogenin, a new cytotoxic steroidal saponin isolated from Dracaena draco. Bioorg Med Chem. 2004; 12: 4423-4429. ISSN 0968-0896. [CrossRef].
  39. Ivanova A, Mikhova B, Batsalova T, Dzhambazov B, Kostova I. New furostanol saponins from Smilax aspera L. and their in vitro cytotoxicity. Fitoterapia. 2011; 82: 282-287. ISSN 0367-326X. [CrossRef].
  40. Zhao Y-F, Zhou J, Zhang M-J, Zhang M, Huang X-F. Cytotoxic steroidal saponins from the rhizome of Anemarrhena asphodeloides. Steroids. 2020; 155: 1-5. ISSN 0039-128X. [CrossRef].
  41. Mosad RR, Ali MH, Ibrahim MT, Shaaban H, Emara M, Wahba AE. New cytotoxic steroidal saponins from Cestrum parqui. Phytochem Letters. 2017; 22: 167-173. ISSN 1874-3900. [CrossRef].
  42. Raslan MA, Melek FR, Said AA, Elshamy AI, Umeyama A, Mounier MM. New cytotoxic dihydrochalcone and steroidal saponins from the aerial parts of Sansevieria cylindrica Bojer ex Hook. Phytochem Letters. 2017; 39-43. ISSN 1874-3900. [CrossRef].
  43. Matsuda H, Pongpiriyadacha Y, Morikawa T, Kishi A, Kataoka S, Yoshikawa M. Protective effects of steroid saponins from Paris polyphylla var. yunnanensis on ethanol- or indomethacin-induced gastric mucosal lesions in rats: structural requirement for activity and mode of action. Bioorg Med Chem Let. 2003; 13: 1101-1106. ISSN 0960-894X. [PubMed].
  44. Pereira GM, Ribeiro MG, Silva BP, Parente JP. Structural characterization of a new steroidal saponin from Agave angustifolia var. Marginata and a preliminary investigation of its in vivo antiulcerogenic activity and in vitro membrane permeability property. Bioorg Med Chem Let. 2017; 27: 4345-4349. ISSN 0960-894X. [CrossRef].
  45. Zheng J, ZhengY, Zhi H, Dai Y, Wang N, Wu L et al. Two new steroidal saponins from Selaginella uncinata (Desv.) Spring and their protective effect against anoxia. Fitoterapia. 2013; 88: 25-30. ISSN 0367-326X. [CrossRef].
  46. Wang T, Choi RCY, Li J, Bi CWC, Ran W, Chen X et al. Trillin, a steroidal saponin isolated from the rhizomes of Dioscorea nipponica,exerts protective effects against hyperlipidemia and oxidative stress. J Ethnopharmacol. 2012; 139: 214-220. ISSN 0378-874. [CrossRef].
  47. Li H, Huang W, Wen Y, Gong G, Zhao Q, Yu G. Anti-thrombotic activity and chemical characterization of steroidal saponins from Dioscorea zingiberensis C.H. Wright. Fitoterapia. 2010; 81: 1147-1156. ISSN 0367-326X. [CrossRef].
  48. Diab Y, Ioannou E, Emam A, Vagias C, Roussis V. Desmettianosides A and B, bisdesmosidic furostanol saponins with molluscicidal activity from Yucca desmettiana. Steroids. 2012; 77: 686-690. ISSN 0039-128X. [CrossRef].
  49. Wang G-X, Han J, Zhao L-W, Jiang D-X, Liu Y-T, Liu X-L. Anthelmintic activity of steroidal saponins from Paris polyphylla. Phytomed. 2010; 17: 1102-1105. ISSN 0944-7113. [CrossRef].
  50. Wang K-W, Zhang H, Shen L-Q, Wang W. Novel steroidal saponins from Liriope graminifolia (Linn.) Baker with anti-tumor activities. Carbohyd Res. 2011; 346: 253-258. ISSN 0008-6215. [CrossRef].
  51. He T, Qu R, Qin C, Wang Z, Zhang Y, Shao X et al. Potential mechanisms of Chinese Herbal Medicine that implicated in the treatment of COVID-19 related renal injury. Saudi Pharm J. 2020; 28: 1138-1148. ISSN 1319-0164. [CrossRef].
  52. Hsieh MJ, Tsai TL, Hsieh YS, Wang CJ, Chiou HL. Dioscin-induced autophagy mitigates cell apoptosis through modulation of PI3K/Akt and ERK and JNK signaling pathways in human lung cancer cell lines. Arch Toxicol. 2017; 91: 2495-2496. ISSN 1432-0738. [PubMed].
  53. Bailly C, Vergote G. Glycyrrhizin: An alternative drug for the treatment of COVID-19 infection and the associated respiratory syndrome. Pharmacol Therap. 2020; 214: 107618. ISSN 0163-7258. [CrossRef].

Most read articles by the same author(s)

Author(s)

  • Gabriela Moysés Pereira
    Federal University of Rio de Janeiro (UFRJ), Health Sciences Center (CCS), Natural Products Research Institute (IPPN), Av. Carlos Chagas Filho, 373 - Bloco H, Cidade Universitária, Ilha do Governador, CEP 21941-599, Rio de Janeiro, RJ, Brazil.
    https://orcid.org/0000-0002-0307-1547
  • Maria de Fátima Simão Jucá Cruz
    Federal University of Rio de Janeiro (UFRJ), Health Sciences Center (CCS), Natural Products Research Institute (IPPN), Av. Carlos Chagas Filho, 373 - Bloco H, Cidade Universitária, Ilha do Governador, CEP 21941- 599, Rio de Janeiro, RJ, Brazil.
    https://orcid.org/0000-0002-6611-3388

Metrics

  • Article viewed 567 time(s)

How to Cite

1.
Therapeutic properties and structural characterization of steroidal saponins: a review. Rev Fitos [Internet]. 2021 Sep. 30 [cited 2024 Nov. 22];15(3):403-17. Available from: https://revistafitos.far.fiocruz.br/index.php/revista-fitos/article/view/1101

1. DIREITOS CEDIDOS - A cessão total não exclusiva, permanente e irrevogável dos direitos autorais patrimoniais não comerciais de utilização de que trata este documento inclui, exemplificativamente, os direitos de disponibilização e comunicação pública da OBRA, em qualquer meio ou veículo, inclusive em Repositórios Digitais, bem como os direitos de reprodução, exibição, execução, declamação, recitação, exposição, arquivamento, inclusão em banco de dados, preservação, difusão, distribuição, divulgação, empréstimo, tradução, dublagem, legendagem, inclusão em novas obras ou coletâneas, reutilização, edição, produção de material didático e cursos ou qualquer forma de utilização não comercial.

2. AUTORIZAÇÃO A TERCEIROS - A cessão aqui especificada concede à FIOCRUZ - FUNDAÇÃO OSWALDO CRUZ o direito de autorizar qualquer pessoa – física ou jurídica, pública ou privada, nacional ou estrangeira – a acessar e utilizar amplamente a OBRA, sem exclusividade, para quaisquer finalidades não comerciais, nos termos deste instrumento.

3. USOS NÃO COMERCIAIS - Usos não comerciais são aqueles em que a OBRA é disponibilizada gratuitamente, sem cobrança ao usuário e sem intuito de lucro direto por parte daquele que a disponibiliza e utiliza.

4. NÃO EXCLUSIVIDADE - A não exclusividade dos direitos cedidos significa que tanto o AUTOR como a FIOCRUZ - FUNDAÇÃO OSWALDO CRUZ ou seus autorizados poderão exercê-los individualmente de forma independente de autorização ou comunicação, prévia ou futura.

5. DIREITOS RESERVADOS - São reservados exclusivamente ao(s) AUTOR(es) os direitos morais sobre as obras de sua autoria e/ou titularidade, sendo os terceiros usuários responsáveis pela atribuição de autoria e manutenção da integridade da OBRA em qualquer utilização. Ficam reservados exclusivamente ao(s) AUTOR(es) e/ou TITULAR(es) os usos comerciais da OBRA incluída no âmbito deste instrumento.

6. AUTORIA E TITULARIDADE - O AUTOR declara ainda que a obra é criação original própria e inédita, responsabilizando-se integralmente pelo conteúdo e outros elementos que fazem parte da OBRA, inclusive os direitos de voz e imagem vinculados à OBRA, obrigando-se a indenizar terceiros por danos, bem como indenizar e ressarcir a FIOCRUZ - FUNDAÇÃO OSWALDO CRUZ de eventuais despesas que vierem a suportar, em razão de qualquer ofensa a direitos autorais ou direitos de voz ou imagem, principalmente no que diz respeito a plágio e violações de direitos.

7. GRATUIDADE - A cessão e autorização dos direitos indicados e estabelecidos neste Instrumento será gratuita, não sendo devida qualquer remuneração, a qualquer título, ao autor e/ou titular, a qualquer tempo.

Report an error