Bioprospecting of anticancer activity of genera Garcinia and Clusia: a brief review

Lavínia de Carvalho Brito
OrcID
Maria Raquel Figueiredo

    Lavínia de Carvalho Brito

    Universidade do Estado do Rio de Janeiro (UERJ), Instituto de Química/Central Analítica Fernanda Coutinho. Av São Francisco Xavier, 524, Pavilhão Haroldo Lisboa da Cunha, sala 109, terreo, Maracanã, CEP 20550-013, Rio de Janeiro, RJ, Brasil.

    OrcID http://orcid.org/0000-0003-4448-1275

    Graduada em Química Industrial - Faculdades Reunidas Nuno Lisboa (1985), com mestrado em Química Orgânica pela Universidade Federal do Rio de Janeiro (1992) e doutorado em Química Orgânica pela Universidade Federal Fluminense (2003). Desde 1984 é química da Universidade do Estado do Rio de Janeiro com experiência na área de Química Orgänica, Química de Produtos Naturais, Espectroscopia de Ressonäncia Magnética Nuclear, Radiofarmácia, Medicina Nuclear e Radioecologia. Desde 2009 trabalha na Central Analítica Fernanda Coutinho - UERJ e desenvolve projeto de pesquisa em Fitomedicamentos, na área de Química de Produtos Naturais, na Fundação Oswaldo Cruz (FIOCRUZ).

    Maria Raquel Figueiredo

    Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos, Química de Produtos Naturais. Rua Sizenando Nabuco, 100, Manguinhos, Laboratório de Química de Produtos Naturais-PN3, CEP 21041-250, Rio de Janeiro, RJ, Brasil.

    Possui graduação em Química Industrial pela Universidade Federal Fluminense (1981), mestrado em Química de Produtos Naturais pela Universidade Federal do Rio de Janeiro (1985) e doutorado em Química Orgânica pela Universidade de São Paulo (1991). Atualmente é pesquisador titular da Fundação Oswaldo Cruz. Tem experiência na área de Química, com ênfase em Química dos Produtos Naturais, atuando principalmente nos seguintes temas: Quimiossistemática, Fitoquímica e Desenvolvimento Tecnológico.


Keywords

Bioprospecting
Clusiaceae
Clusia studartiana
Cancer
Garcinia

Abstract

Bioprospecting is a way to extract economic value from Brazilian biodiversity, comprising mainly the pharmaceutical industry. Cancer is one of the main causes of mortality in the world and 64.9% of anticancer drugs approved from 1946 to 2019 were extracted from natural sources. The Clusiaceae family has several bioactive secondary metabolites, highlighting the antineoplastic action of species from the genera Garcinia and Clusia. The objective of this work was to carry out a brief review on anticancer activity of the Clusia and Garcinia genera, belonging to the Clusiaceae family. The bibliographic search was carried out from 2000 to 2021, in the Scifinder, Pubmed, Scopus and Web of Science databases. In vitro and in vivo studies of both genera were selected, on anticancer activity of some of the most representative isolated substances, and the action mechanisms involved. Duplicates, questionable or insufficient data were excluded. This review reinforces the importance of bioprospecting anticancer molecules from the Clusiaceae family, which could contribute to drug discovery from natural sources and a sustainable technological development in Brazil.

References

  1. Newman DJ. The influence of brazilian biodiversity on searching for human use pharmaceuticals. J Braz Chem Soc. 2017; 28(3): 402-414. ISSN 01035053 [CrossRef].
  2. SiBBr. Sistema da Informação sobre a Biodiversidade Brasileira. Acesso em: 05 jan. 2021. Disponível em: [Link].
  3. Saccaro Junior NL. Bioprospecção e desenvolvimento sustentável. Desafios do Desenvolvimento. Instituto de Pesquisa Econômica Aplicada (IPEA) [online] 2012; Acesso em: 22 fev. 2021. Disponível em: [Link].
  4. Institute for Human Data Science (IQVIA). The global use of medicine in 2019 and outlook to 2023 – Forecasts and Areas to Watch. Institute Reports January 2019. Acesso em: 18 fev. 2021. Disponível em: [Link].
  5. Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020; 83(3): 770−803. ISSN 01633864, 15206025. [CrossRef].
  6. American Cancer Society (ACS). Global cancer facts and figures. Atlanta 2018. Acesso em: 10 jan. 2021. Disponível em: [Link].
  7. Vieira LLM, Kijoa A. 2009. Triterpenes from the plants of the family Clusiaceae (Guttiferae): chemistry and biological activities. In natural products chemistry biochemistry and pharmacology. Goutam Brahmachari (Editor), Narosa Publishing House Pvt. Ltd., New Delhi, India, 326-381. ISBN: 978-81-7319-886-1.
  8. Pradeep Kumar SV, Puranik SB, Nandini BN. Evaluation of alpha-mangostin, isolated and purified from the crude extract of Garcinia mangostana, for the antidiabetic, anti-inflammatory and antioxidant activity. Int J Pharm Pharm Res. 2017; 8(2): 75-95. ISSN 2349-7203. [Link].
  9. Ibrahim SRM, Abdallah HM, El-Halawany AM, Radwan MF, Shehata IA, Al-Harshany EM et al. Garcixanthones B and C, new xanthones from the pericarps of Garcinia mangostana and their cytotoxic activity. Phytochem Lett. 2018. 12-16. ISSN 1874-3900 [CrossRef].
  10. Jiang Y, Xiao L, Fu W, Tang Y, Lertnimitphun P, Kim N et al. Gaudichaudione H Inhibits inflammatory responses in macrophages and dextran sodium sulfate-induced colitis in mice. Front Pharmacol. 2020; 10: 1561. ISSN 1663-9812. [CrossRef].
  11. Espírito Santo BLS, Santana LF, Junior WHK, Araújo FO, Bogo D, Freitas KC et al. Medicinal potential of Garcinia species and their compounds. Molecules 2020; 25: 4513. eISSN 1420-3049 [CrossRef].
  12. Stevens PF. 2001 Angiosperm Phylogeny Website. Version 14. July 2017. [and more or less continuously updated since]. Acesso em: 20 mar. 2020. Disponível em [Link].
  13. REFLORA - Flora do Brasil 2020 - Algas Fungos e Plantas. Jardim Botânico do Rio de Janeiro. Acesso em: 15 ago. 2020. Disponível em: [Link].
  14. Ullah MF, Ahmad A. Nutraceuticals and natural product derivatives: disease Prevention & Drug Discovery. John Wiley & Sons, 2019. ISBN: 978-1-119-43667-6.
  15. Chen TH, Tsai MJ, Fu YS, Weng CF. The exploration of natural compounds for anti-diabetes from distinctive species Garcinia linii with comprehensive review of the garcinia family. Biomolecules. 2019; 9(11): 641. ISSN 2218-273X. [CrossRef].
  16. Karim N, Rahman A, Chanudom L, Thongsom M, Tangpong J. Mangosteen vinegar rind from Garcinia mangostana prevents high-fat diet and streptozotocin-induced type ii diabetes nephropathy and apoptosis. J Food Sci. 2019; 84(5): 1208-1215. ISSN 1750-3841. [CrossRef].
  17. Ali MY, Paul S, Tanvir EM, Hossen MS, Rumpa NN, Saha M et al. Antihyperglycemic, antidiabetic, and antioxidant efects of Garcinia pedunculata in rats. Evid-Based Compl Alt. [online]. 2017. ID 2979760. Acesso em: 20 fev. 2021. ISSN 1741-4288. [CrossRef].
  18. Brito LC, Berenger AL, Figueiredo MR. An overview of anticancer activity of Garcinia and Hypericum. Food ChemToxicol. 2017; 109: 847-862. ISSN 0278-6915 [CrossRef].
  19. Mello RFA, Pinheiro WBS, Benjamim JK, Siqueira FC, Chisté RC, Santos AS. A fast and efficient preparative method for separation and purification of main bioactive xanthones from the waste of Garcinia mangostana L. by high-speed counter current chromatography. Arab J Chem. 2021; 103252. ISSN 1878-5352. [CrossRef].
  20. John OD, Mouatt P, Panchal SK, Brown L. Rind from purple mangosteen (Garcinia mangostana) attenuates diet-induced physiological and metabolic changes in obese rats. Nutrients. 2021; 13: 319. ISSN 2072-6643 [CrossRef].
  21. Al-Shagdari A, Alarcón AB, Cuesta-Rubio O, Piccinelli AL, Rastrelli L. Biflavonoids, main constituents from Garcinia bakeriana leaves. Nat Prod Comm. 2013; 8(9): 1237-1240. ISSN 15559475. [CrossRef].
  22. Fuentes RG, Pearce KC, Du Y, Rakotondrafara A, Valenciano AL, Cassera MB et al. Phloroglucinols from the roots of Garcinia dauphinensis and their antiproliferative and antiplasmodial activities. J Nat Prod. 2019; 82(3): 431-439. ISSN 0163-3864. [CrossRef].
  23. Nanjing University of Chinese Medicine. 2006. Dictionary of Chinese Traditional Medicines. Shanghai Scientific and Technical Publishers, Shanghai, China.
  24. Wang X, Deng R, Lu Y, Xu Q, Yan M, Ye D et al.Gambogic acid as a non-competitive inhibitor of ATPbinding cassette transporter B1 reverses the multidrug resistance of human epithelial cancers by promoting ATP-binding CassetteTransporter B1 protein degradation. Basic Clin Pharmacol. 2013; 112: 25-33. ISSN 2279-0780. [CrossRef].
  25. Kaennakam S, Sukandar ER, Juntagoot T, Siripong P, Tip-Pyang S. Four new xanthones and their cytotoxicity from the stems of Garcinia schomburgkiana. J Nat Med. 2021. 75(4): 871-876. ISSN 13403443.[CrossRef].
  26. Aggarwal V, Tuli HS, Kaur J, Aggarwal D, Parashar G, Parashar NC et al. Garcinol exhibits anti-neoplastic effects by targeting diverse oncogenic factors in tumor cells. Biomedicines. 2020; 8(5): 103. ISSN 2227-9059. [CrossRef].
  27. Kopytko P, Piotrowska K, Janisiak J, Tarnowski M. Garcinol-A natural histone acetyltransferase inhibitor and new anti-cancer epigenetic drug. Int J Mol Sci. 2021; 22: 2828. ISSN 1422-0067. [CrossRef].
  28. Lüttge U. Clusia A woody neotropical genus of remarkable plasticity and diversity. Ecological Studies 194. Springer Berlin Heidelberg. 2007. ISBN 978-3-540-37243-1.
  29. Kumar S. Yanshu, Sharma S, Chattopadhyay SK. The potential health benefit of polyisoprenylated benzophenones from Garcinia and related genera: ethnobotanical and therapeutic importance. Fitoterapia. 2013; 89(1): 86-125. ISSN 0367-326X. [CrossRef].
  30. Anholeti MC, Paiva, SR, Figueiredo MR, Kaplan MAC. Chemosystematic aspects of polyisoprenylated benzophenones from the Genus clusia. An Acad Bras Cienc. 2015; 87(1): 289-301. ISSN 0001-3765. [CrossRef].
  31. Ferraz CG, Silva MDCC, Pereira DASG. Caldas BVV, Mattos R, Oliveira VVG et al. Polyprenylated benzophenone derivatives from Clusia burle-marxii and their chemotaxonomic significance. Biochem Systemat Ecol. 2021; 94: 104218. ISSN 0305-1978. [CrossRef].
  32. Silva EM, Araújo RM, Freire-Filha LG, Silveira ER, Lopes NP, Paula JE et al. Clusiaxanthone and tocotrienol series from Clusia pernambucensis and their antileishmanial activity. J Braz Chem Soc. 2013; 24(8): 1314-1321. ISSN 1678-4790. [CrossRef].
  33. Ribeiro PR, Ferraz CG, Guedes MLS, Martins D, Cruz FG. A new biphenyl and antimicrobial activity of extracts and compounds from Clusia burlemarxii. Fitoterapia. 2011; 82(8): 1237-1240. ISSN 1873-6971. [CrossRef].
  34. Silva MCA, Paiva SR. Antioxidant activity and flavonoid content of Clusia fluminensis Planch. & Triana. An Acad Bras Cienc. 2012; 84(3): 609-616. ISSN 0001-3765. [CrossRef].
  35. Ferreira RO, de Carvalho Jr. AR, Riger CJ, Castro RN, da Silva TMS, de Carvalho MG. Chemical constituents and in vivo antioxidant activity of flavonoids isolated of Clusia lanceolata (Clusiaceae). Quim Nova. 2016; 39 (9): 1093-1097. [CrossRef].
  36. Ferraz CG. Derivados poliprenilados de benzofenonas, triterpenos, esteróides, bifenila e xantona de Clusia burlemarxii e atividade citotóxica contra células GL-15, de glioblastoma humano. Salvador. 2011. Dissertação de Mestrado [Programa de Pós-graduação em Química] – Universidade Federal da Bahia, UFBA, Salvador. 2011. [Link].
  37. Carballo DD, Seeber S, Strumberg D, Hilger RA. Novel antitumoral compound isolated from Clusia rosea. Int J Clin Pharmacol Ther. 2003; 41(12): 622-3. ISSN 0946-1965. [CrossRef].
  38. Ferraz CG, Ribeiro PR, Marques EJ, Mendonça R, Guedes MLS, Silveira ER et al. Polyprenylated benzophenone derivatives with a novel tetracyclo [8.3.1.03,11.05,10] tetradecane core skeleton from Clusia burle-marxii exhibited cytotoxicity against GL-15 glioblastoma-derived human cell line. Fitoterapia. 2019; 138: 104346. ISSN 0367-326X. [CrossRef].
  39. Cuesta-Rubio O, Frontana-Uribeb BA, Ramírez-Apanb T, Cárdenas J. Polyisoprenylated benzophenones in cuban propolis; biological activity of nemorosone. Z Naturforsch C J Biosci. 2002; 57(3-4): 372-8. ISSN 0341-0382. [CrossRef].
  40. Díaz-Carballo D, Seeber S, Strumberg D, Hilger RA. Novel antitumoral compound isolated from Clusia rosea. Int J Clin Pharmacol Ther. 2003; 41(12): 622-623. [CrossRef].
  41. Díaz-Carballo D, Malak S, Freistühler M, Elmaagacli A, Bardenheuer W, Reusch HP. Nemorosone blocks proliferation and induces apoptosis in leukemia cells. Int J Clin Pharmacol Ther. 2008; 46(8): 428-439. ISSN 0946-1965. [CrossRef].
  42. Díaz-Carballo D, Malak S, Bardenheuer W, Freistuehler M, Reuscha HP. Cytotoxic activity of nemorosone in neuroblastoma cells. J Cell Mol Med. 2008; 12 (6B): 2598-2608. ISSN 1582-4934. [CrossRef].
  43. Mohamed GA, Al-Abd AM, El-Halawany AM, Abdallah HM, Ibrahim SRM. New xanthones and cytotoxic constituents from Garcinia mangostana fruit hulls against human hepatocellular, breast and colorectal cancer cell lines. J Ethnopharmacol. 2017. 198: 302-312. ISSN 1872-7573. [CrossRef].
  44. Semwal RB, Semwal DK, Vermaak I, Viljoen A. A comprehensive scientific overview of Garcinia cambogia. Fitoterapia. 2015; 102: 134-148. ISSN 0367-326X. [CrossRef].
  45. Hassan, NKNC, Taher M, Susanti D. Phytochemical constituents and pharmacological properties of Garcinia xanthochymus: a review. Biomed Pharmacother. 2018; 106: 1378-1389. ISSN 7533322. [CrossRef].
  46. Zhang K-J, Gu Q-L, Yang K, Ming X-J, Wang J-X. Anticarcinogenic effects of α-mangostin: a review. Planta Med. 2017; 83 (188-202). ISSN 0032-0943. [CrossRef].
  47. Signorelli P, Ghidoni R. Resveratrol as an anticancer nutrient: molecular basis, open questions and promises J Nutr Biochem. 2005. 16(8): 449-66. ISSN 0955-2863 [CrossRef].
  48. Jung H-A, Su B-N, Keller WJ, Mehta RG, Kinghorn AD. Antioxidant xanthones from the pericarp of Garcinia mangostana (Mangosteen). J Agric Food Chem. 2006; 54(6): 2077-2082. ISSN 0021-8561. [CrossRef].
  49. Balunas MJ, Brueggemeier BSRW, Kinghorn AD. Xanthones from the botanical dietary supplement mangosteen (Garcinia mangostana) with aromatase inhibitory activity. J Nat Prod. 2008; 71(7): 1161-1166. ISSN 0163-3864. [CrossRef].
  50. Yu BP. Cellular defenses against damage from reactive oxygen species. Physiol Rev. 1994; 74(1): 139-162. ISSN 1522-1210. [CrossRef].
  51. Ma Q. Transcriptional responses to oxidative stress: pathological and toxicological implications. Pharmacol Ther. 2010. 125(3): 376-393. ISSN 1879-016X. [CrossRef].
  52. Sampath PD, Vijayaraghavan K. Cardioprotective effect of α-mangostin, a xanthone derivative from mangosteen on tissue defense system against isoproterenol-induced myocardial infarction in rats. J Biochem Mol Toxicol. 2007; 21(6): 336-339. ISSN 1099-0461. [CrossRef].
  53. Sampath PD, Kannan V. Mitigation of mitochondrial dysfunction and regulation of eNOS expression during experimental myocardial necrosis by alpha-mangostin, a xanthonic derivative from Garcinia mangostana. Drug Chem Toxicol. 2009; 32(4): 344-52. ISSN 1525-6014. [CrossRef].
  54. Buelna-Chontal M, Correa F, Hernández-Reséndiz S, Zazueta C, Pedraza-Chaverri J. Protective effect of α-mangostin on cardiac reperfusion damage by attenuation of oxidative stress. J Med Food. 2011; 14(1): 1370-1374. ISSN 1557-7600. [CrossRef].
  55. Márquez-Valadez B, Lugo-Huitrón R, Valdivia-Cerda V, Miranda-Ramírez LR, Pérez-De La Cruz V, González-Cuahutencos O et al. The natural xanthone alpha-mangostin reduces oxidative damage in rat brain tissue. Nutr Neurosci. 2009; 12(1): 35-42. ISSN 1476-8305. [CrossRef].
  56. Johnson JJ, Petiwala SM, Syed DN, Rasmussen JT, Adhami VM, Siddiqui IA et al. α-Mangostin, a xanthone from mangosteen fruit, promotes cell cycle arrest in prostate cancer and decreases xenograft tumor growth. Carcinogenesis. 2012; 33(2): 413-419. ISSN 1460-2180. [CrossRef].
  57. Wang JJ, Zhang W, Sanderson BJ. Altered mRNA expression related to the apoptotic effect of three xanthones on human melanoma SK MEL 28 cell line. Biomed Res Int. 2013: 715603. ISSN 2314-6141. [CrossRef].
  58. Kurose H, Shibata MA, Iinuma M, Otsuki Y. Alterations in cell cycle and induction of apoptotic cell death in breast cancer cells treated with α-mangostin extracted from mangosteen pericarp. J Biomed Biotechnol. 2012: 672428. [CrossRef].
  59. Xu Q, Ma J, Lei J, Duan W, Sheng L, Chen X et al. α-Mangostin suppresses the viability and epithelial-mesenchymal transition of pancreatic cancer cells by downregulating the PI3 K/Akt pathway. Biomed Res Int. 2014: 546353. ISSN 2314-6141. [CrossRef].
  60. Aisha AF, Abu-Salah KM, Ismail Z, Majid AM. In vitro and in vivo anti-colon cancer effects of Garcinia mangostana xanthones extract. BMC Complement Altern Med. 2012; 12: 104. ISSN 1472-6882. [CrossRef].
  61. Watanapokasin R, Jarinthanan F, Jerusalmi A, Suksamrarn S, Nakamura Y, Sukseree S et al. Potential of xanthones from tropical fruit mangosteen as anticancer agents: caspase-dependent apoptosis induction in vitro and in mice. Appl Biochem Biotechnol. 2010; 162(4): 1080-1094. ISSN 1559-0291. [CrossRef].
  62. Matsumoto K, Akao Y, Kobayashi E, Ohguchi K, Ito T, Tanaka T et al. Induction of apoptosis by xanthones from mangosteen in human leukemia cell lines. J Nat Prod. 2003; 66(8): 1124-1127. ISSN 0163-3864. [CrossRef].
  63. Chen JJ, Long ZJ, Xu DF, Xiao RZ, Liu LL, Xu ZF et al. Inhibition of autophagy augments the anticancer activity of α-mangostin in chronic myeloid leukemia cells. Leuk Lymphoma. 2014; 55(3): 628-638. ISSN 1029-2403. [CrossRef].
  64. Menasria F, Azebaze AGB, Billard C, Faussat AM, Nkengfack AE, Meyer M et al. Apoptotic effects on B-cell chronic lymphocytic leukemia (B-CLL) cells of heterocyclic compounds isolated from Guttiferaes. Leuk Res. 2008; 32(12): 1914-1926. ISSN 0145-2126. [CrossRef] [PubMed].
  65. Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L. VEGF receptor signaling-in control of vascular function. Nat Rev Mol Cell Biol. 2006; 75(5): 359-371. ISSN 1471-0080. [CrossRef] [PubMed].
  66. Arifianti L, Rofida S, Sukardiman, Zaini NC. Antiangiogenesis from pericarp of mangosteen on T47D breast cancer. Planta Husada. 2014: 2(1): 12-15. ISSN 2338-7130. [Link].
  67. Lei J, Huo X, Duan W, Xu Q, Li R, Ma J et al. Alpha-Mangostin inhibits hypoxia-driven ROS-induced PSC activation and pancreatic cancer cell invasion. Cancer Lett. 2014; 347(1): 129-138. ISSN 1872-7980. [CrossRef] [PubMed].
  68. Wang JJ, Sanderson BJ, Zhang W. Significant anti-invasive activities of α-mangostin from the mangosteen pericarp on two human skin cancer cell lines. Anticancer Res. 2012; 32(9): 3805-3816. [Link].
  69. Kaomongkolgit R. Alpha-mangostin suppresses MMP-2 and MMP-9 expression in head and neck squamous carcinoma cells. Odontology. 2013; 101(2): 227-232. ISSN 1618-1255. [CrossRef] [PubMed].
  70. Shih YW, Chien ST, Chen PS, Lee JH, Wu SH, Yin LT. α-Mangostin suppresses phorbol 12-myristate 13-acetate-induced MMP-2/MMP-9 expressions via αvβ3 integrin/FAK/ERK and NF-κB signaling pathway in human lung adenocarcinoma A549 cells. Cell Biochem Bioph. 2010; 58(1): 31-44. ISSN 1559-0283. [CrossRef] [PubMed].
  71. Hung SH, Shen KH, Wu CH, Liu CL, Shih YW. α-Mangostin suppresses PC-3 human prostate carcinoma cell metastasis by inhibiting matrix metalloproteinase-2/9 and urokinase-plasminogen expression through the JNK signaling pathway. J Agric Food Chem. 2009; 57(4): 1291-1298. ISSN 1520-5118. [CrossRef].
  72. Yuan J, Wu Y, Lu G. α-Mangostin suppresses lipopolysaccharide-induced invasion by inhibiting matrix metalloproteinase-2/9 and increasing E-cadherin expression through extracellular signalregulated kinase signaling in pancreatic cancer cells. Oncology Lett. 2013; 5(6): 1958-1964. ISSN 1792-1082. [CrossRef].
  73. Wu C-P, Hsiao SH, Murakami M, Lu YJ, Li YQ, Huang YH et al. Alpha-Mangostin reverses multidrug resistance by attenuating the function of the multidrug resistance-linked ABCG2 transporter. Mol Pharm. 2017; 14(8): 2805-2814. ISSN 1543-8392. [CrossRef].
  74. Muchtaridi M, Wijaya CA. Anticancer potential of α-mangostin. Asian J Pharm Clin Res. 2017; 10(12): 440-445. ISSN 2455-3891. [CrossRef].
  75. Ho C-K, Huang Y-L, Chen C-C. Garcinone E, a xanthone derivative, has potent cytotoxic effect against hepatocellular carcinoma cell lines. Pl Med. 2002; 68(11): 975-979. ISSN 0032-0943. [CrossRef].
  76. Yang R, Li P, Li N, Zhang Q, Bai X, Wang L et al. Xanthones from the Pericarp of Garcinia mangostana. Molecules. 2017; 22(5): 683. ISSN 1433-1373. [CrossRef].
  77. Sheeja K, Lakshmi S. Antimetastatic potential of garcinone E in human oral cancer cells. Asian Pac J Cancer Prev. 2019; 20 (1): 65-72. ISSN 1513-7368. [CrossRef].
  78. Xu X-H, Liu Q-Y, Li T, Liu J-L, Chen X, Huang L et al. Garcinone E induces apoptosis and inhibits migration and invasion in ovarian cancer cells. Sci Rep. 2017; 7(1):1-13. ISSN 2045-2322. [CrossRef].
  79. Yang L, Xu Z, Wang W. Garcinone-E exhibits anticancer effects in HeLa human cervical carcinoma cells mediated via programmed cell death, cell cycle arrest and suppression of cell migration and invasion. AMB Express. 2020; 10(1): 126. ISSN 2191-0855. [CrossRef].
  80. Ying Y-M, Yu K-M, Lin T-S, Ma L-F, Fang L, Yao J-B et al. Antiproliferative prenylated xanthones from the pericarps of Garcinia mangostana. Chem Nat Compd. 2017; 53(3): 555-556. ISSN 1573-8388. [CrossRef].
  81. Jin S, Shi K, Liu L, Chen Y, Yang G. Xanthones from the bark of Garcinia xanthochymus and the mechanism of induced apoptosis in human hepatocellular carcinoma HepG2 cells via the mitochondrial pathway. Int J Mol Sci. 2019; 20(19): 4803. ISSN 1422-0067. [CrossRef].
  82. Youn UJ, Sripisut T, Miklossy G, Turkson J, Laphookhieo S, Chang LC. Bioactive polyprenylated benzophenone derivatives from the fruits extracts of Garcinia xanthochymus. Bioorganic Med Chem Lett. 2017; 27(16): 3760-3765. ISSN 0960-894X. [CrossRef].
  83. Ionta M, Ferreira-Silva GA, Niero EL, Costa EM, Martens AA, Rosa W et al. 7-epiclusianone, a benzophenone extracted from Garcinia brasiliensis (Clusiaceae), induces cell cycle arrest in G1/S transition in A549 cells. Molecules. 2015; 20(7): 12804-12816. ISSN 1433-1373. [CrossRef].
  84. Murata RM, Yatsuda R, dos Santos MH, Kohn LK, Martins FT, Nagem TJ et al. Antiproliferative effect of benzophenones and their influence on cathepsin activity. Phytother Res. 2010; 24(3): 379-383. ISSN 0951-418X. [CrossRef].
  85. Sales L, Pezuk JA, Borges KS, Brassesco MS, Scrideli CA, Tone LG et al. Anticancer activity of 7-epiclusianone, a benzophenone from Garcinia brasiliensis, in glioblastoma. BMC Complement Altern Med. 2015; 15: 393. ISSN 1472-6882. [CrossRef].
  86. Taylor WF, Yanez M, Moghadam SE, Farimani MM, Soroury S, Ebrahimi SN et al. 7-epi-clusianone, a multi-targeting natural product with potential chemotherapeutic, immune-modulating, and anti-angiogenic properties. Molecules. 2019; 24(23): 4415. ISSN 1433-1373. [CrossRef].
  87. Lamartine-Hanemann SS, Ferreira-Silva GA, Horvath RO, Soncini R, Caixeta ES, Rocha-Sales B et al. A tetraprenylated benzophenone 7-epiclusianone induces cell cycle arrest at G1/S transition by modulating critical regulators of cell cycle in breast cancer cell lines. Toxicol In Vitro. 2020; 68:104927. ISSN 0887-2333. [CrossRef].
  88. McCandlish LE, Hanson JC, Stout GH. The structures of two derivatives of bicyclo [3,3,1]nonane-2,4,9-trione. A natural product: clusianone, C33H42O4, and trimethylated catechinic acid, C18H20O6. Acta Crystallogr. 1976; 32(6): 1793-1801. ISSN 1600-8642. [Link].
  89. Simpkins NS, Holtrup F, Rodeschini V, Taylor JD, Wolf R. Comparison of the cytotoxic effects of enantiopure PPAPs, including nemorosone and clusianone. Bioorg Med Chem Lett. 2012; 22(19): 6144-6147. ISSN 0960-894X. [CrossRef].
  90. Pardo-Andreu GL, Nuñez-Figueredo Y, Tudella VG, Cuesta-Rubio O, Rodrigues FP, Pestana CR et al. The anti-cancer agent nemorosone is a new potent protonophoric mitochondrial uncoupler. Mitochondrion. 2011; 11(2): 255-263. ISSN 1567-7249. [CrossRef].
  91. Reis FHZ, Pardo-Andreu GL, Nunez-Figueredo Y, Cuesta-Rubio O, Marin-Prida J, Uyemura AS et al. Clusianone, a naturally occurring nemorosone regioisomer, uncouples rat liver mitochondria and induces HepG2 cell death. Chem-Biol Interact. 2014; 212: 20-29. ISSN 0009-2797. [CrossRef].
  92. Cuesta-Rubio O, Frontana-Uribeb BA, Ramírez-Apanb T, Cárdenas J. Polyisoprenylated Benzophenones in Cuban Propolis; Biological Activity of Nemorosone. Z Naturforsch C J Biosci. 2002; 57(3-4): 372-378. ISSN 0939-5075. [CrossRef].
  93. Díaz-Carballo D, Seeber S, Strumberg D, Hilger RA. Novel antitumoral compound isolated from Clusia rosea. Int J Clin Pharmacol Ther. 2003; 41(12): 622-623. ISSN 0946-1965. [CrossRef].
  94. Díaz-Carballo D, Malak S, Freistühler M, Elmaagacli A, Bardenheuer W, Reusch HP. Nemorosone blocks proliferation and induces apoptosis in leukemia cells. Int J Clin Pharmacol Ther. 2008; 46(8): 428-439. ISSN 0946-1965. [CrossRef].
  95. Díaz-Carballo D, Malak S, Bardenheuer W, Freistuehler M, Reuscha HP. Cytotoxic activity of nemorosone in neuroblastoma cells. J Cell Mol Med. 2008; 12(6B): 2598-608. ISSN 1582-4934. [CrossRef].
  96. Holtrup F, Bauer A, Fellenberg K, Hilger RA, Wink M, Hoheisel JD. Microarray analysis of nemorosone-induced cytotoxic effects on pancreatic cancer cells reveals activation of the unfolded protein response (UPR). Br J Pharmacol. 2011; 162(5): 1045-1059. ISSN 1476-5381. [CrossRef].
  97. Popolo A, Piccinelli AL, Morello S, Sorrentino R, Osmany CR, Rastrelli L et al. Cytotoxic activity of nemorosone in human MCF-7 breast cancer cells. Can J Physiol Pharmacol. 2011; 89(1): 50-57. ISSN 1205-7541. [CrossRef].
  98. Camargo MS, Prieto AM, Resende FA, Boldrin PK, Cardoso CR, Fernández MF et al. Evaluation of estrogenic, antiestrogenic and genotoxic activity of nemorosone, the major compound found in brown Cuban propolis. BMC Complement Altern Med. 2013; 13: 201. ISSN 1472-6882. [CrossRef].
  99. Camargo MS, Oliveira MT, Santoni MM, Resende FA, Oliveira-Höhne AP, Espanha LG et al. Effects of nemorosone, isolated from the plant Clusia rosea, on the cell cycle and gene expression in MCF-7 BUS breast cancer cell lines. Phytomedicine 2015; 22(1): 153-157. ISSN 0944-7113. [CrossRef].
  100. Frión-Herrera Y, Gabbia D, Cuesta-Rubio O, Martin S, Carrara M. Nemorosone inhibits the proliferation and migration of hepatocellular carcinoma cells. Life Sci. 2019; 235: 116817. ISSN 1879-0631. [CrossRef].
  101. Frión-Herrera Y, Gabbia D, Díaz-García A, Cuesta-Rubio O, Carrara M. Chemosensitizing activity of Cuban propolis and nemorosone in doxorubicin resistant human colon carcinoma cells. Fitoterapia. 2019; 136: 104173. ISSN 0367-326X. [CrossRef].
  102. Frión-Herrera Y, Gabbia D, Scaffidi M, Zagni L, Cuesta-Rubio O, Martin S et al. The Cuban Propolis component nemorosone inhibits proliferation and metastatic properties of human colorectal cancer cells. Int J Mol Sci. 2020; 21: 1827. ISSN 1422-0067. [CrossRef].
  103. Marques EJ, Ferraz CG, dos Santos IBF, dos Santos IIP, El-Bacha RS, Ribeiro PR et al. Chemical constituents isolated from Clusia criuva subsp. Criuva and their chemophenetics significance. Biochem Syst Ecol. 2021; 97: 104293. ISSN 0305-1978. [CrossRef].
  104. Bailon-Moscoso N, Romero-Benavides JC, Sordo M, Villacis J, Silva R, Celi L et al. Phytochemical study and evaluation of cytotoxic and genotoxic properties of extracts from Clusia latipes leaves. Rev Bras Farmacog. 2016: 26(1): 44-49. ISSN 1981-528X. [CrossRef].
  105. Brito LC, Carvalho MV, Silva VP, Heringer AP, Silva PM, Fontão APGA et al. Evaluation of cytotoxic activity of triterpenes from Clusia studartiana. J Med Plants Res. 2019; 13(15): 335-342. ISSN 1996-0875. [CrossRef].
  106. Gill BS, Kumar S, Navgeet. Triterpenes in cancer: significance and their influence. Mol Biol Reports. 2016; 43(9): 881-896. ISSN 1573-4978. [CrossRef].
  107. Åžoica C, Voicu M, Ghiulai R, Dehelean C, Racoviceanu R, Trandafirescu C et al. Natural Compounds in Sex Hormone-Dependent Cancers: The role of triterpenes as therapeutic agents. Front Endocrinol. 2021; 11: 612396. ISSN 1664-2392. [CrossRef].

Most read articles by the same author(s)

Author(s)

  • Lavínia de Carvalho Brito
    Universidade do Estado do Rio de Janeiro (UERJ), Instituto de Química/Central Analítica Fernanda Coutinho. Av São Francisco Xavier, 524, Pavilhão Haroldo Lisboa da Cunha, sala 109, terreo, Maracanã, CEP 20550-013, Rio de Janeiro, RJ, Brasil.
    http://orcid.org/0000-0003-4448-1275
  • Maria Raquel Figueiredo
    Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos, Química de Produtos Naturais. Rua Sizenando Nabuco, 100, Manguinhos, Laboratório de Química de Produtos Naturais-PN3, CEP 21041-250, Rio de Janeiro, RJ, Brasil.

Categories

Metrics

  • Article viewed 366 time(s)

How to Cite

1.
Bioprospecting of anticancer activity of genera Garcinia and Clusia: a brief review. Rev Fitos [Internet]. 2022 Mar. 4 [cited 2024 Nov. 22];16(Supl. 2):247-66. Available from: https://revistafitos.far.fiocruz.br/index.php/revista-fitos/article/view/1227

1. DIREITOS CEDIDOS - A cessão total não exclusiva, permanente e irrevogável dos direitos autorais patrimoniais não comerciais de utilização de que trata este documento inclui, exemplificativamente, os direitos de disponibilização e comunicação pública da OBRA, em qualquer meio ou veículo, inclusive em Repositórios Digitais, bem como os direitos de reprodução, exibição, execução, declamação, recitação, exposição, arquivamento, inclusão em banco de dados, preservação, difusão, distribuição, divulgação, empréstimo, tradução, dublagem, legendagem, inclusão em novas obras ou coletâneas, reutilização, edição, produção de material didático e cursos ou qualquer forma de utilização não comercial.

2. AUTORIZAÇÃO A TERCEIROS - A cessão aqui especificada concede à FIOCRUZ - FUNDAÇÃO OSWALDO CRUZ o direito de autorizar qualquer pessoa – física ou jurídica, pública ou privada, nacional ou estrangeira – a acessar e utilizar amplamente a OBRA, sem exclusividade, para quaisquer finalidades não comerciais, nos termos deste instrumento.

3. USOS NÃO COMERCIAIS - Usos não comerciais são aqueles em que a OBRA é disponibilizada gratuitamente, sem cobrança ao usuário e sem intuito de lucro direto por parte daquele que a disponibiliza e utiliza.

4. NÃO EXCLUSIVIDADE - A não exclusividade dos direitos cedidos significa que tanto o AUTOR como a FIOCRUZ - FUNDAÇÃO OSWALDO CRUZ ou seus autorizados poderão exercê-los individualmente de forma independente de autorização ou comunicação, prévia ou futura.

5. DIREITOS RESERVADOS - São reservados exclusivamente ao(s) AUTOR(es) os direitos morais sobre as obras de sua autoria e/ou titularidade, sendo os terceiros usuários responsáveis pela atribuição de autoria e manutenção da integridade da OBRA em qualquer utilização. Ficam reservados exclusivamente ao(s) AUTOR(es) e/ou TITULAR(es) os usos comerciais da OBRA incluída no âmbito deste instrumento.

6. AUTORIA E TITULARIDADE - O AUTOR declara ainda que a obra é criação original própria e inédita, responsabilizando-se integralmente pelo conteúdo e outros elementos que fazem parte da OBRA, inclusive os direitos de voz e imagem vinculados à OBRA, obrigando-se a indenizar terceiros por danos, bem como indenizar e ressarcir a FIOCRUZ - FUNDAÇÃO OSWALDO CRUZ de eventuais despesas que vierem a suportar, em razão de qualquer ofensa a direitos autorais ou direitos de voz ou imagem, principalmente no que diz respeito a plágio e violações de direitos.

7. GRATUIDADE - A cessão e autorização dos direitos indicados e estabelecidos neste Instrumento será gratuita, não sendo devida qualquer remuneração, a qualquer título, ao autor e/ou titular, a qualquer tempo.

Report an error