Triagem in silico de compostos com atividade ansiolítica encontrados na espécie Magnolia obovata

Camila Moreira Caetano Vaz
GIOVANNA SIQUEIRA BOCCHI
OrcID
LEONARDO LUIZ BORGES
OrcID

Keywords

Plantas Medicinais
Efeito Central
Modelagem Farmacofórica
in silico

Abstract

Magnolia obovata, known as “Japanese cucumber”, is a deciduous tree of Asian origin, constituting a medicinal plant due to its anti-inflammatory, anxiolytic, antidepressant effects, among other central effects, already demonstrated in the literature. The objective of this study was to suggest the mechanisms of action for the effects on the central nervous system of the compounds identified in the species M. obovata, especially regarding the anxiolytic effect currently sought with the use of the plant. Nineteen compounds present in M. obovata were identified, with only 2 molecules (alpha-eudesmol and gamma-eudesmol) showing in silico pharmacokinetic and toxicological properties favorable to anxiolytic bioactivity. Such molecules inhibit acylcarnitine hydrolase and increase free acylcarnitine, possibly generating an anxiolytic effect. Pharmacophoric modeling of those molecules showed 6 interaction points with the 5 most potent known ligands of acylcarnitine hydrolase and such structural similarity is promising for acting on this target. There are advantages of the alternative mechanism of action of this compound in relation to current anxiolytics, which could be used to formulate new therapies in the treatment of anxiety disorders. The results obtained here open perspectives for tests in in vitro and in vivo models, aiming to confirm the results of the computational analyses.

References

  1. Sarmento CG, Pinto VMJ, Santos KKB, Maniçoba BBP, Borges PM. Estudo bibliográfico sobre o uso das plantas medicinais e fitoterápicos no Brasil. Revista Verde de Agroecologia e Desenvolvimento Sustentável. 2013;8(5):208–12. Disponível em: https://www.gvaa.com.br/revista/index.php/RVADS/article/view/3577
  2. Carneiro FM, José M, Albernaz LC, Darc J, Costa P. Tendências Dos Estudos Com Plantas Medicinais No Brasil. Revista Sapiência: sociedade, saberes e práticas educacionais. 2014;3(2):44–75. Disponível em: https://www.revista.ueg.br/index.php/sapiencia/article/view/2954
  3. Viegas C, Bolzani S, Química I De, Estadual U, Julio P, Filho DM, et al. Os produtos naturais e a Química Medicinal Moderna. Química Nova. 2006;29(2):326–37. DOI: https://doi.org/10.1590/S0100-40422006000200025
  4. Ham HJ, Lee YS, Yun J, Han SB, Son DJ, Hong JT. Anxiolytic-like effects of the ethanol extract of Magnolia obovata leaves through its effects on GABA-benzodiazepine receptor and neuroinflammation. Behavioural Brain Research. 2020 abr;383:112518. DOI: https://doi.org/10.1016/j.bbr.2020.112518
  5. Mangolini VI, Andrade LH, Wang YP. Epidemiologia dos transtornos de ansiedade em regiões do Brasil. Rev Med (Rio J). 2019 nov 27;98(6):415–22. DOI: https://doi.org/10.11606/issn.1679-9836.v98i6p415-422
  6. Slee A, Nazareth I, Bondaronek P, Liu Y, Cheng Z, Freemantle N. Pharmacological treatments for generalised anxiety disorder: a systematic review and network meta-analysis. The Lancet. 2019 fev;393(10173):768–77. DOI: https://doi.org/10.1016/s0140-6736(18)31793-8
  7. Shaker B, Ahmad S, Lee J, Jung C, Na D. In silico methods and tools for drug discovery. Comput Biol Med. 2021;137(September):104851. DOI: https://doi.org/10.1016/j.compbiomed.2021.104851
  8. Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7(January):1–13. DOI: https://doi.org/10.1038/srep42717
  9. Filimonov DA, Lagunin AA, Gloriozova TA, Rudik A V., Druzhilovskii DS, Pogodin P V., et al. Prediction of the biological activity spectra of organic compounds using the pass online web resource. Chem Heterocycl Compd (N Y). 2014;50(3):444–57. DOI: https://doi.org/10.1007/s10593-014-1496-1
  10. Banerjee P, Eckert AO, Schrey AK, Preissner R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018;46(W1):W257–63. DOI: https://doi.org/10.1093/nar/gky318
  11. Schneidman-Duhovny D, Dror O, Inbar Y, Nussinov R, Wolfson HJ. PharmaGist: a webserver for ligand-based pharmacophore detection. Nucleic Acids Res. 2008;36(Web Server issue):223–8. DOI: https://doi.org/10.1093%2Fnar%2Fgkn187
  12. Lee YJ, Lee YM, Lee CK, Jung JK, Han SB, Hong JT. Therapeutic applications of compounds in the Magnolia family. Pharmacol Ther. 2011 maio;130(2):157–76. DOI: https://doi.org/10.1016/j.pharmthera.2011.01.010
  13. Fuchs A, Baur R, Schoeder C, Sigel E, Müller CE. Structural analogues of the natural products magnolol and honokiol as potent allosteric potentiators of GABAA receptors. Bioorg Med Chem. 2014;22(24):6908–17. DOI: https://doi.org/10.1016/j.bmc.2014.10.027
  14. Chagas CM, Moss S, Alisaraie L. Drug metabolites and their effects on the development of adverse reactions: Revisiting Lipinski’s Rule of Five. Int J Pharm. 2018;549(1–2):133–49. DOI: https://doi.org/10.1016/j.ijpharm.2018.07.046
  15. Daina A, Michielin O, Zoete V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019;47(W1):W357–3664. DOI: https://doi.org/10.1093/nar/gkz382
  16. Gallo K, Goede A, Preissner R, Gohlke BO. SuperPred 3.0: drug classification and target prediction - a machine learning approach. Nucleic Acids Res. 2022;50(W1):W726–31. DOI: https://doi.org/10.1093/nar/gkac297
  17. Chen R, Liu X, Jin S, Lin J, Liu J. Machine Learning for Drug-Target Interaction Prediction. Molecules. 2018 ago 31;23(9):2208. DOI: https://doi.org/10.3390/molecules23092208
  18. Ahmed AT, MahmoudianDehkordi S, Bhattacharyya S, Arnold M, Liu D, Neavin D, et al. Acylcarnitine metabolomic profiles inform clinically-defined major depressive phenotypes. J Affect Disord. 2020;264(May 2019):90–7. DOI: https://doi.org/10.1016%2Fj.jad.2019.11.122
  19. Cuccurazzu B, Bortolotto V, Valente MM, Ubezio F, Koverech A, Canonico PL, et al. Upregulation of mGlu2 Receptors via NF-κB p65 Acetylation Is Involved in the Proneurogenic and Antidepressant Effects of Acetyl-L-Carnitine. Neuropsychopharmacology. 2013 out 14;38(11):2220–30. DOI: https://doi.org/10.1038/npp.2013.121
  20. Bigio B, Mathé AA, Sousa VC, Zelli D, Svenningsson P, McEwen BS, et al. Epigenetics and energetics in ventral hippocampus mediate rapid antidepressant action: Implications for treatment resistance. Proceedings of the National Academy of Sciences. 2016 jul 12;113(28):7906–11. DOI: https://doi.org/10.1073%2Fpnas.1603111113
  21. Tashiro K, Kaida Y, Yamagishi S ichi, Tanaka H, Yokoro M, Yano J, et al. L-carnitine Supplementation Improves Self-rating Depression Scale Scores in Uremic Male Patients Undergoing Hemodialysis. Lett Drug Des Discov. 2017;14(6):737–42. DOI: https://doi.org/10.2174%2F1570180814666170216102632
  22. Sarzi-Puttini P, Giorgi V, di Lascio S, Fornasari D. Acetyl-L-carnitine in chronic pain: A narrative review. Pharmacol Res. 2021 nov;173:105874. DOI: https://doi.org/10.1016/j.phrs.2021.105874
  23. Strawn JR, Geracioti L, Rajdev N, Clemenza K, Levine A. Pharmacotherapy for generalized anxiety disorder in adult and pediatric patients: an evidence-based treatment review. Expert Opin Pharmacother. 2018 jul 3;19(10):1057–70. DOI: https://doi.org/10.1080/14656566.2018.1491966
  24. Delpino FM, da Silva CN, Jerônimo JS, Mulling ES, da Cunha LL, Weymar MK, et al. Prevalence of anxiety during the COVID-19 pandemic: A systematic review and meta-analysis of over 2 million people. J Affect Disord. 2022 dez;318:272–82. DOI: https://doi.org/10.1016/j.jad.2022.09.003
  25. Giacobbe P, Flint A. Diagnosis and Management of Anxiety Disorders. CONTINUUM: Lifelong Learning in Neurology. 2018 jun;24(3):893–919. DOI: https://doi.org/10.1212/con.0000000000000607

Author(s)

Categories

Metrics

  • Article viewed 83 time(s)

How to Cite

1.
Triagem in silico de compostos com atividade ansiolítica encontrados na espécie Magnolia obovata . Rev Fitos [Internet]. 2024 Sep. 27 [cited 2024 Nov. 21];18. Available from: https://revistafitos.far.fiocruz.br/index.php/revista-fitos/article/view/1661
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Revista Fitos

Report an error
Deprecated: urlencode(): Passing null to parameter #1 ($string) of type string is deprecated in /sites/producao/revistafitos.far/revistafitos_3405/plugins/generic/coins/CoinsPlugin.php on line 131