Uma revisão de seis plantas medicinais e aromáticas e seus benefícios para a saúde

Felipe de Lima Franzen
OrcID
Mari Silvia Rodrigues de Oliveira
OrcID
Helena Maria Andre Bolini
OrcID

    Felipe de Lima Franzen

    Universidade Estadual de Campinas

    OrcID https://orcid.org/0000-0001-8925-4098

    Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos, Departamento de Engenharia e Tecnologia de Alimentos (DETA). Rua Monteiro Lobato, Cidade Universitária, CEP 13083-862, Campinas, SP, Brasil.

    Mari Silvia Rodrigues de Oliveira

    Universidade Federal de Santa Maria

    OrcID https://orcid.org/0000-0003-4803-5643

    Possui graduação em Farmácia Modalidade Farmacêutico Bioquímico Tecnóloga em Alimentos pela Universidade Federal de Santa Maria (1993), mestrado em Ciência e Tecnologia dos Alimentos pela Universidade Federal de Santa Maria (1999) e doutorado pelo mesmo programa (2013). Atualmente é professor adjunto na Universidade Federal de Santa Maria-UFSM. Tem experiência na área de Ciência e Tecnologia de Alimentos, com ênfase em Tecnologia de Alimentos, atuando principalmente nos seguintes temas: desenvolvimento de alimentos, análises físico-químicas e microbiológicas de alimentos.

    Helena Maria Andre Bolini

    Universidade Estadual de Campinas

    OrcID https://orcid.org/0000-0001-9841-4479

    Helena Maria Andre Bolini é Professora Titular da Universidade Estadual de Campinas. Possui graduação em Farmácia Bioquímica na modalidade em Indústria de Fármacos, Medicamentos e Alimentos e mestrado em Alimentos e Nutrição pela Universidade Estadual Paulista, doutorado em Engenharia de Alimentos pela Universidade Estadual de Campinas, pós-doutorado FAPESP realizado na FCF/UNESP-IQSC/USP-FEA/UNICAMP. Publicou mais de 250 artigos científicos em periódicos especializados com seletiva política editorial e apresentou mais de 500 trabalhos em eventos científicos internacionais e nacionais. Possui 19 capítulos de livros publicados. Desenvolveu software com Registro no INPI (Time Intensity of Flavors and Tastes) sendo a metodologia de coleta de dados citada como referência no Annual Book of ASTM Standards de 2023) e apresenta uma patente registrada (BR10201902346). Orientou 38 teses de doutorado, 36 dissertações de mestrado, supervisionou 6 Pós-Doutoramentos (5 com bolsa CNPQ e 1 FAPESP) e orientou 46 trabalhos de iniciação cientifica. Está orientando 14 teses de doutorado, 2 dissertações de mestrado e 1 projetos de Iniciação Científica (PIBIC/CNPQ). Membro permanente do Comitê E18 on Sensory Evaluation da American Society of Testing and Materials (ASTM) International para análise e revisão de métodos e protocolos oficiais em Análise Sensorial de Alimentos e Bebidas. Membro do Corpo Editorial do Journal of Sensory Studies (Wiley), Food Chemistry Advances (Elsevier) e Foods (MDPI). Membro representante da América Latina no Committee to Global Outreach of Society of Sensory Professionals. Tem experiência na área de Ciência e Tecnologia de Alimentos, com ênfase em Ciência Sensorial e Estudos de Consumidor, atuando principalmente nos seguintes temas: pesquisa, desenvolvimento e inovação de alimentos com direcionamento por Sensometria, Análise Descritiva Quantitativa, Psicofísica, Edulcorantes, Estudos de Preferências do Consumidor, Análise Tempo-Intensidade Múltipla. Foi Coordenadora do Programa de Pós-Graduação em Alimentos e Nutrição da UNICAMP de 2007 a 2011. Chefe do Departamento de Alimentos e Nutrição da FEA UNICAMP de 2003 a 2007 e de 2011 até 2017. Responsável pelo Laboratório de Ciência Sensorial e Estudos de Consumidor e Laboratório de Sensometria da FEA UNICAMP. Idealizadora e organizadora do evento internacional "1st and 2nd INTERNATIONAL CONGRESS ON ADVANCES OF SENSORY SCIENCE AND CONSUMER RESEARCH" em 2023 / 2024 realizado na UNICAMP. Membro designado em 2022 para taskgroup de revisão e reaprovação de métodos discriminativos em análise sensorial junto à ASTM International. Membro designado para análise técnica dos métodos, protocolos e estatística em ciência sensorial e estudos de consumidor nos comitês E18 Sensory Evaluation, E18.01 Terminology, E18.02 ISO, E18.03 Sensory Theory and Statistics, E18.04 Fundamentals of Sensory, E18.05 Sensory Applications--General, E18.06 Food and Beverage Evaluation, E18.07 Personal Care and Household Evaluation, E18.91 Standing Committee on Subcommittees and Task Groups, E18.92 Standing Committee on Strategic Planning and E18.93 Standing Committee on Communication and Training


Palavras-chave

Euterpe oleraceae Martius
Cinnamomum zeylanicum Blume
Paullinia cupana Kunth
Hibiscus sabdariffa DC
Spilanthes oleraceae L
Ilex paraguariensis A.St.-Hil

Resumo

O Brasil possui uma grande biodiversidade de plantas com propriedades nutricionais e biológicas importantes para a humanidade. nutrição. O objetivo deste estudo é revisar o uso de plantas na nutrição e a presença de bioativos compostos que trazem benefícios à saúde, referenciando pesquisas com seis diferentes espécies de plantas nativas e exóticas (“açaí”, “canela”, “guaraná”, “hibisco”, “jambu” e “erva mate”). Numerosos estudos sobre plantas acima mencionadas foram realizadas para avaliar e confirmar seus efeitos e benefícios. Clínico e estudos metabólicos demonstraram que o consumo dessas plantas, principalmente de seus extratos, pode prevenir ou tratar diversas doenças como Alzheimer, câncer, obesidade, diabetes, doenças cardiovasculares, aterosclerose, fibrose hepática e cardiovascular. A utilização de extratos dessas plantas na alimentação melhora algumas características de qualidade como estabilidade oxidativa, valor nutricional, higiênico-sanitário e sensorial propriedades, além de os alimentos se tornarem funcionais com propriedades antioxidantes. Esta revisão indica que essas plantas têm potencial para serem utilizadas como ingredientes em formulações de diversos alimentos e devem ser considerada importante para estudos futuros com a investigação de seus efeitos sobre esses alimentos.

Referências

  1. Grzeszczuk M, Stefaniak A, Meller E, Wysocka G. Mineral composition of some edible flowers. J
  2. Elementol. 2018; 23(1): 151-162. [https://doi.org/10.5601/jelem.2017.22.2.1352].
  3. Franzen FL, Oliveira MSR, Menegaes JF, Gusso AP, Silva MN, Richards NSPS. Physico-chemical,
  4. microbiological and sensory characteristics of jellies made with rose and hibiscus flowers. Braz J Dev. 2020;
  5. (3): 14828-14845. [https://doi.org/10.34117/bjdv6n3-377].
  6. Franzen FL, Menegaes JF, Rosa JR, Pigatto GM, Lidório HF, Backes FAAL, et al. Antioxidant and
  7. antimicrobial activity of edible flower extracts obtained by different extraction methods. Ensaios Ciênc.
  8. ; 25(4): 513-520. [https://doi.org/10.17921/1415-6938.2021v25n4p513-520].
  9. Stefaniak A, Grzeszczuk ME. Nutritional and biological value of five edible flower species. Not Bot Horti
  10. Agrobo. 2019; 47(1): 128-134. [https://doi.org/10.15835/nbha47111136].
  11. Marques LLM, Ferreira EDF, Paula MND, Klein T, Mello JCPD. Paullinia cupana: a multipurpose plant-a
  12. review. Rev Bras Farmacogn. 2019; 29: 77-110. [https://doi.org/10.1016/j.bjp.2018.08.007].
  13. Pires IV, Silva AE. Caracterização e capacidade antioxidante do jambu (Spilanthes oleracea L.) in natura
  14. procedente do cultivo convencional e de hidroponia. Braz J Dev. 2020; 6(10): 74624-74636.
  15. [https://doi.org/10.34117/bjdv6n10-040].
  16. Machado KN, Barbosa AP, De Freitas AA, Alvarenga LF, De Padua RM, Faraco AAG, et al. TNF-α
  17. inhibition, antioxidant effects and chemical analysis of extracts and fraction from Brazilian guarana seed
  18. powder. Food Chem. 2021; 355: 129563. [https://doi.org/10.1016/j.foodchem.2021.129563].
  19. Bruxel F, Rodrigues KF, Gastmann J, Winhelmann MC, Silva SM, Hoehne L, De Freitas EM, et al.
  20. Phytotoxicity of aqueous extract of Ilex paraguariensis A. St.-Hil on Conyza bonariensis (L). Cronquist. Sci
  21. Afr J Bot. 2022; 146: 546-552. [https://doi.org/10.1016/j.sajb.2021.10.019].
  22. Silva HRD, Assis DDCD, Prada AL, Silva JOC, Sousa MBD, Ferreira AM, et al. Obtaining and
  23. characterization of anthocyanins from Euterpe oleracea (açaí) dry extract for nutraceutical and food
  24. preparations. Rev Bras Farmacogn. 2019; 29: 677-685. [https://doi.org/10.1016/j.bjp.2019.03.004].
  25. Aguiar BAA, Bueno FG, Panizzon G, Silva DBD, Athaydes BR, Gonçalves RDCR, et al. Chemical
  26. analysis of the semipurified extract of Paullinia cupana and evaluation of in vitro inhibitory effects against
  27. Helicobacter pylori. Nat Prod Res. 2020; 34(16): 2332-2335.
  28. [https://doi.org/10.1080/14786419.2018.1533825].
  29. Sandamali JAN, Hewawasam RP, Jayatilaka KAPW, Mudduwa LKB. Cinnamomum zeylanicum Blume
  30. (Ceylon cinnamon) bark extract attenuates doxorubicin induced cardiotoxicity in Wistar rats. Saudi Pharm
  31. J. 2021; 29(8): 820-832. [https://doi.org/10.1016/j.jsps.2021.06.004].
  32. Husin NNA, Balkis BS, Abd Hamid Z, Abd Rahman M, Louis SR, Osman M, et al. Aqueous calyxes
  33. extract of Roselle or Hibiscus sabdariffa Linn supplementation improves liver morphology in streptozotocin
  34. induced diabetic rats. Arab J Gastroenterol. 2017; 18: 13-20. [https://doi.org/10.1016/j.ajg.2017.02.001].
  35. Dallazen JL, Maria-Ferreira D, Luz BB, Nascimento AM, Cipriani TR, Souza LM, et al. Pharmacological
  36. potential of alkylamides from Acmella oleracea flowers and synthetic isobutylalkyl amide to treat inflammatory
  37. pain. Inflammopharmacol. 2020; 28: 175–186. [https://doi.org/10.1007/s10787-019-00601-9].
  38. Habtemariam S. The chemical and pharmacological basis of yerba maté (Ilex paraguariensis A.
  39. St.-Hil.) as potential therapy for type 2 diabetes and metabolic syndrome. Medicinal foods as
  40. potential therapies for type-2 diabetes and associated diseases. Academic Press. New York: NY; USA;
  41. p. 943-983.
  42. Lucas BF, Costa JAV, Brunner TA. Attitudes of consumers toward Spirulina and açaí and their use as
  43. food ingredients. LWT. 2023; 178: 114600. [https://doi.org/10.1016/j.lwt.2023.114600].
  44. Silveira JT, Rosa APC, Morais MG, Victoria FN, Costa JAV. An integrative review of Açaí (Euterpe
  45. oleracea and Euterpe precatoria): traditional uses, phytochemical composition, market trends, and emerging
  46. applications. Food Res Inter. 2023; 113304. [https://doi.org/10.1016/j.foodres.2023.113304].
  47. Lucas BF, Zambiazi RC, Costa JAV. Biocompounds and physical properties of açaí pulp dried by
  48. different methods. LWT. 2018; 98: 335-340. [https://doi.org/10.1016/j.lwt.2018.08.058].
  49. Lucas BF, Guelpa R, Vaihinger M, Brunner T, Costa JAV, Denkel C. Extruded snacks enriched with açaí
  50. berry: physicochemical properties and bioactive constituents. Food Sci Technol. 2022; 42: e14822.
  51. [https://doi.org/10.1590/fst.14822].
  52. Yamaguchi KKL, Pereira LFR, Lamarão CV, Lima ES, Veiga-Junior VF. Amazon açai: Chemistry and
  53. biological activities: A review. Food chemistry. 2015; 179: 137-151.
  54. https://doi.org/10.1016/j.foodchem.2015.01.055].
  55. Brasil. Instituto Brasileiro de Geografia e Estatística-IBGE. Produção de Açaí (cultivo) no Brasil. 2022.
  56. [Accessed 21 Ago 2024]. Available in: [https://www.ibge.gov.br/explica/producao-agropecuaria/acaicultivo/br].
  57. De Jesus ALT, Cristianini M, Santos NM, Maróstica Júnior MR. Effects of high hydrostatic pressure on
  58. the microbial inactivation and extraction of bioactive compounds from açaí (Euterpe oleracea Martius) pulp.
  59. Food Res Int. 2020; 130: 108856. [https://doi.org/10.1016/j.foodres.2019.108856].
  60. Barbosa PO, Souza MO, Silva MP, Santos GT, Silva ME, Bermano G, et al. Açaí (Euterpe oleracea
  61. Martius) supplementation improves oxidative stress biomarkers in liver tissue of dams fed a high-fat diet and
  62. increases antioxidant enzymes’ gene expression in offspring. Biomed Pharmacother. 2021; 139: 111627.
  63. [https://doi.org/10.1016/j.biopha.2021.111627].
  64. Vigano J, De Aguiar AC, Veggi PC, Sanches VL, Rostagno MA, Martinez J. Techno-economic evaluation
  65. for recovering phenolic compounds from açaí (Euterpe oleracea) by-product by pressurized liquid extraction.
  66. J Supercrit Fluids. 2022; 179: 105413. [https://doi.org/10.1016/j.supflu.2021.105413].
  67. Amorim DS, Amorim IS, Chisté RC, Fernandes FAN, Mariutti LRB, Godoy HT, et al. Nonthermal
  68. technologies for the conservation of açaí pulp and derived products: A comprehensive review. Food Res
  69. Inter. 2023; 113575. [https://doi.org/10.1016/j.foodres.2023.113575].
  70. Garzón GA, Narváez-Cuenca CE, Vincken JP, Gruppen H. Polyphenolic composition and antioxidant
  71. activity of açaí (Euterpe oleracea Mart.) from Colombia. Food Chem. 2017; 217: 364-372.
  72. [https://doi.org/10.1016/j.foodchem.2016.08.107].
  73. Barbosa PO, De Souza MO, Pala D, Freitas RN. Açaí (Euterpe oleracea Martius) as an antioxidant.
  74. Pathology. 2020; 127-133. [https://doi.org/10.1016/B978-0-12-815972-9.00012-3].
  75. Si LW. Trending foods and beverages. In: Food Society. Academic Press. 2020; 305-321.
  76. [https://doi.org/10.1016/B978-0-12-811808-5.00016-7].
  77. Oliveira NKS, Almeida MRS, Pontes FMM, Barcelos MP, Silva CHTP, Rosa JMC, et al. Antioxidant effect
  78. of flavonoids present in Euterpe oleraceae Martius and neurodegenerative diseases: a literature review.
  79. Cent Nerv Syst Agents Med Chem. 2019; 19 (2): 75-99.
  80. [https://doi.org/10.2174/1871524919666190502105855].
  81. Barros L, Calhelha RC, Queiroz MJR, Santos-Buelga C, Santos EA, Regis WC, et al. The powerful in
  82. vitro bioactivity of Euterpe oleracea Mart. seeds and related phenolic compounds. Ind Crops Prod. 2015;
  83. : 318-322. [https://doi.org/10.1016/j.indcrop.2015.05.086].
  84. Machado AK, Cadoná FC, Assmann CE, Andreazza AC, Duarte MMMF, Branco CS, et al. Açaí (Euterpe
  85. oleracea Mart.) has anti-inflammatory potential through NLRP3-inflammasome modulation. J Funct Foods.
  86. ; 56: 364-371. [https://doi.org/10.1016/j.jff.2019.03.034].
  87. Sharifi-Rad J, Dey A, Koirala N, Shaheen S, El Omari N, Salehi B, et al. Cinnamomum species: bridging
  88. phytochemistry knowledge, pharmacological properties and toxicological safety for health benefits. Front
  89. Pharmacol. 2021; 12: 600139. [https://doi.org/10.3389/fphar.2021.600139].
  90. Mini Raj N, Vikram HC, Muhammed Nissar VA, Nybe EV. Cinnamon and Indian Cinnamon (Indian
  91. Cassia). In: Handbook of Spices in India: 75 Years of Research and Development. Singapore: Springer
  92. Nature Singapore. 2023; 2921-2991. [https://doi.org/10.1007/978-981-19-3728-6_43].
  93. Khoshnevisan K, Alipanah H, Baharifar H, Ranjbar N, Osanloo M. Chitosan nanoparticles containing
  94. cinnamomum verum J. Presl essential oil and cinnamaldehyde: preparation, characterization and anticancer
  95. effects against melanoma and breast cancer cells. Trad Integr Medic. 2022; 7(1): 1-12.
  96. [https://doi.org/10.18502/tim.v7i1.9058].
  97. Nazareno AM, Purnamasari L, Dela Cruz JF. In vivo and in vitro anti-diabetic effects of cinnamon
  98. (Cinnamomum sp.) plant extract: A review. Canrea J Food Technol Nutr Culin J. 2022; 5(2): 151–171.
  99. [https://doi.org/10.20956/canrea.v5i2.673].
  100. Labbaci FZ, Belkhodja H, Elkadi FZ, Megharbi A, Belhouala K. HPLC-MS Analysis and evaluation of
  101. Antioxidant and Anti-Inflammatory Potential of Cinnamomum cassia Extract. Tropic J Nat Prod Res. 2023;
  102. (8): 3637-3642. [http://www.doi.org/10.26538/tjnpr/v7i8.10].
  103. Gogoi R, Sarma N, Loying R, Pandey Sk, Begum T, Lal M. A comparative analysis of bark and leaf
  104. essential oil and their chemical composition, antioxidant, anti-inflammatory, antimicrobial activities and
  105. genotoxicity of northeast Indian Cinnamomum zeylanicum Blume. J Nat Prod. 2021; 11(1): 74-84.
  106. [https://doi.org/10.2174/2210315509666191119111800].
  107. Chuesiang P, Siripatrawan U, Sanguandeekul R, Yang JS, McClements DJ, McLandsborough L.
  108. Antimicrobial activity and chemical stability of Cinnamon oil in oil-in-water nanoemulsions fabricate during
  109. the phase inversion temperature method. LWT. 2019; 110: 190-196.
  110. [https://doi.org/10.1016/j.lwt.2019.03.012].
  111. Muhammad DRA, Tuenter E, Patria GD, Foubert K, Pieters L, Dewettinck K. Phytochemical composition
  112. and antioxidant activity of Cinnamomum burmannii Blume extracts and their potential application in white
  113. chocolate. Food Chem. 2021; 340: 127983. [https://doi.org/10.1016/j.foodchem.2020.127983].
  114. Tamfu AN, Kucukaydin S, Ceylan O, Sarac N, Duru ME. Phenolic composition, enzyme inhibitory and
  115. anti-quorum sensing activities of cinnamon (Cinnamomum zeylanicum Blume) and Basil (Ocimum basilicum
  116. Linn). Chem Africa. 2021; 4: 759–767. [https://doi.org/10.1007/s42250-021-00265-5].
  117. Marques LLM, Panizzon GP, Aguiar BAA, Simionato AS, Cardozo-Filho L, Andrade G, et al. Guaraná
  118. (Paullinia cupana) seeds: Selective supercritical extraction of phenolic compounds. Food Chem. 2016; 212:
  119. -711. [https://doi.org/10.1016/j.foodchem.2016.06.028].
  120. Roggia I, Dalcin AJF, De Souza D, Machado AK, De Souza DV, Da Cruz IBM, et al. Guarana: StabilityIndicating RP-HPLC method and safety profile using microglial cells. J Food Compost Anal. 2020; 94:
  121. [https://doi.org/10.1016/j.jfca.2020.103629].
  122. Bittencourt LDS, Zeidán‐Chuliá F, Yatsu FKJ, Schnorr CE, Moresco KS, Kolling EA, et al. Guarana
  123. (Paullinia cupana Mart.) prevents β‐amyloid aggregation, generation of advanced glycation‐end products
  124. (AGEs), and acrolein‐induced cytotoxicity on human neuronal‐like cells. Phytother Res. 2014; 28(11): 1615-
  125. [https://doi.org/10.1002/ptr.5173].
  126. Hertz E, Cadoná FC, Machado AK, Azzolin V, Holmrich S, Assmann C, et al. Effect of Paullinia cupana
  127. on MCF‐7 breast cancer cell response to chemotherapeutic drugs. Mol Clin Oncol. 2015; 3(1) 37-43.
  128. [https://doi.org/10.3892/mco.2014.438].
  129. Kober H, Tatsch E, Torbitz VD, Cargnin LP, Sangoi MB, Bochi GV, et al. Genoprotective and
  130. hepatoprotective effects of Guarana (Paullinia cupana Mart. var. sorbilis) on CCl4-induced liver damage in
  131. rats. Drug Chem Toxicol. 2016; 39(1): 48-52. [https://doi.org/10.3109/01480545.2015.1020546].
  132. Flores ERS, Dal Berto M, Ranzi AD, Cadoná FC, Machado A, Santos GFF, et al. Effect of guarana
  133. extract (Paullinia cupana), an amazonian fruit richest in caffeine on human bladder cancer cell line.
  134. Rev Bras Geriat Gerontol. 2017; 8: 88-102. [https://doi.org/10.1016/j.jfca.2020.103629].
  135. Krewer CC, Suleiman L, Duarte MMMF, Ribeiro EE, Mostardeiro CP, Montano MAE, et al. Guarana, a
  136. supplement rich in caffeine and catechin, modulates cytokines: evidence from human in vitro and in vivo
  137. protocols. Eur Food Res Technol. 2014; 239(1): 49-57. [https://doi.org/10.1007/s00217-014-2182-3].
  138. Schimpl FC, Kiyota E, Mayer JLS, Gonçalves JFC, Silva JF, Mazzafera P. Molecular and biochemical
  139. characterization of caffeine synthase and purine alkaloid concentration in guarana fruit. Phytochemistry.
  140. ; 105: 25-36. [https://doi.org/10.1016/j.phytochem.2014.04.018].
  141. Richardson ML, Arlotta CG. Differential yield and nutrients of Hibiscus sabdariffa L. genotypes when
  142. grown in urban production systems. Sci Hortic. 2021; 288: 110349.
  143. [https://doi.org/10.1016/j.scienta.2021.110349].
  144. Borrás-Linares I, Fernández-Arroyo S, Arráez-Roman D, Palmeros-Suárez PA, Del Val-Díaz R,
  145. Andrade-Gonzáles I, et al. Characterization of phenolic compounds, anthocyanidin, antioxidant and
  146. antimicrobial activity of 25 varieties of Mexican Roselle (Hibiscus sabdariffa). Ind Crops Prod. 2015; 69:
  147. -394. [https://doi.org/10.1016/j.indcrop.2015.02.053].
  148. Wang C, Karmakar B, Awwad NS, Ibrahium HA, El-Kott AF, Abdel-Daim MM, Batiha GES, et al. Biosupported of Cu nanoparticles on the surface of Fe3O4 magnetic nanoparticles mediated by Hibiscus
  149. sabdariffa extract: Evaluation of its catalytic activity for synthesis of pyrano [3, 2-c] chromenes and study of
  150. its anti-colon cancer properties. Arab J Chem. 2022; 15(6): 103809.
  151. [https://doi.org/10.1016/j.arabjc.2022.103809].
  152. Su N, Li J, Yang L, Hou G, Ye M. Hypoglycemic and hypolipidemic effects of fermented milks with added
  153. roselle (Hibiscus sabdariffa L.) extract. J Funct Foods. 2018; 43: 234-241.
  154. [https://doi.org/10.1016/j.jff.2018.02.017].
  155. Vargas-León EA, Díaz-Batalla L, González-Cruz L, Bernardino-Nicanor A, Castro-Rosas J, ReynosoCamacho R, et al. Effects of acid hydrolysis on the free radical scavenging capacity and inhibitory activity of
  156. the angiotensin converting enzyme of phenolic compounds of two varieties of jamaica (Hibiscus sabdariffa).
  157. Ind Crops Prod. 2018; 116: 201-208. [https://doi.org/10.1016/j.indcrop.2018.02.044].
  158. Chen JH, Wang CJ, Wang CP, Sheu JY, Lin CL, Lin HH. Hibiscus sabdariffa leaf polyphenolic extract
  159. inhibits LDL oxidation and foam cell formation involving up-regulation of LXRα/ABCA1 pathway. Food
  160. Chem. 2013; 141(1): 397-406. [https://doi.org/10.1016/j.foodchem.2013.03.026].
  161. Chang HC, Peng CH, Yeh DM, Kao ES, Wang CJ. Hibiscus sabdariffa extract inhibits obesity and fat
  162. accumulation and improves liver steatosis in humans. Food Funct. 2014; 5(4): 734-739.
  163. [https://doi.org/10.1039/C3FO60495K].
  164. Adewuyi A, Otuechere CA, Adebayo OL, Oyeka M, Adewole C. Atherogenic index and lipid profiles in
  165. albino rats fed with surface modified Hibiscus sabdariffa cellulose. Scient African. 2021; 14: e01025.
  166. [https://doi.org/10.1016/j.sciaf.2021.e01025].
  167. Kaulika N, Febriansah R. Chemopreventive activity of roselle’s hexane fraction against breast
  168. cancer by in-vitro and in-silico study. In: Third international conference on sustainable innovation
  169. –health science and nursing (IcoSIHSN 2019). Atlantis Press. 2019. 66-71.
  170. [https://doi.org/10.2991/icosihsn-19.2019.16].
  171. El Bayani GF, Marpaung NLE, Simorangkir DAS, Sianipar IR, Ibrahim N, Kartinah NT, et al. Antiinflammatory effects of Hibiscus sabdariffa Linn. on the IL-1β/IL-1ra ratio in plasma and hippocampus of
  172. overtrained rats and correlation with spatial memory. Kobe J Med Sci. 2018; 64(2): E73. Available in:
  173. [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6347049/].
  174. Ojulari OV, Lee SG, Nam JO. Beneficial effects of natural bioactive compounds from Hibiscus sabdariffa
  175. L. on obesity. Molecules. 2019; 24(1): 210. [https://doi.org/10.3390/molecules24010210].
  176. Agunbiade HO, Fagbemi TN, Aderinola TA. Composition and antioxidant properties of beverages from
  177. graded mixture of green/roasted coffee and Hibiscus sabdariffa calyx flours. Appl. Food Res. 2022; 100163.
  178. [https://doi.org/10.1016/j.afres.2022.100163].
  179. Paulraj J, Govindarajan R, Palpu P. The genus Spilanthes ethnopharmacology, phytochemistry, and
  180. pharmacological properties: A review. Adv Pharmacol Sci. 2013; 2013(1): 510298. Available in:
  181. [https://onlinelibrary.wiley.com/doi/full/10.1155/2013/510298].
  182. Uthpala TGG, Navaratne SB. Acmella oleracea plant; identification, applications and use as an emerging
  183. food source–review. Food Rev. Int. 2021; 37 (4): 399-414.
  184. [https://doi.org/10.1080/87559129.2019.1709201].
  185. Lalthanpuii PB, Lalchhandama K. Chemical composition and broad-spectrum anthelmintic activity of a
  186. cultivar of toothache plant, Acmella oleracea, from Mizoram, India. Pharm Biol. 2020; 58(1): 393-399.
  187. [https://doi.org/10.1080/13880209.2020.1760316].
  188. Joshi V, Sharma GD, Jadhav SK. Alkamides: Multifunctional bioactive agents in Spilanthes spp. J Sci
  189. Res. 2020; 64: 198–206. [https://doi.org/10.37398/JSR.2020.640129].
  190. Barbosa AF, De Carvalho MG, Smith RE, Sabaa-Srur AUO. Spilanthol: Occurrence, extraction,
  191. chemistry and biological activities. Rev Bras Farmacogn. 2016; 26: 128–133.
  192. [https://doi.org/10.1016/j.bjp.2015.07.024].
  193. Nascimento LES, Arriola NDA, Silva LAL, Faqueti LG, Sandjo LP, Araújo CES, et al. Phytochemical
  194. profile of different anatomical parts of jambu (Acmella oleracea (L.) R.K. Jansen): A comparison between
  195. hydroponic and conventional cultivation using PCA and cluster analysis. Food Chem. 2020; 332: 127393.
  196. [https://doi.org/10.1016/j.foodchem.2020.127393].
  197. Nodari E, Gerhardt M. The Uruguay River: A Permeable Border in South America. Rev Inter Amer
  198. Studies. 2021; 14(1): 201-227. [https://doi.org/10.31261/rias.10047].
  199. Alves FEDSB, Scheer AP. Yerba mate (Ilex paraguariensis), science, technology and health: A
  200. systematic review on research, recent advances and possible paths for future studies. South African J
  201. Botany. 2024; 168: 573-587. [https://doi.org/10.1016/j.sajb.2024.04.008].
  202. Cardozo Junior EL, Morand C. Interest of mate (Ilex paraguariensis A. St.- Hil.) as a new natural
  203. functional food to preserve human cardiovascular health - a review. J Funct Foods. 2016; 21: 440-454.
  204. [https://doi.org/10.1016/j.jff.2015.12.010].
  205. Cardozo AGL, Rosa RL, Novak RS, Folquitto DG, Schebelski DJ, Brusamarello LCC, et al. Yerba mate
  206. (Ilex paraguariensis A. St. – hil.): a comprehensive review on chemical composition, health benefits and
  207. recent advances. Res Soc Dev. 2021; 10(11): e590101120036. [https://doi.org/10.33448/rsdv10i11.20036].
  208. Bracesco N, Sanchez AG, Contreras V, Menini T, Gugliucci A. Recent advances on Ilex paraguariensis
  209. research: minireview. J Ethnopharmacol. 2011; 136(3): 378-384.
  210. [https://doi.org/10.1016/j.jep.2010.06.032].
  211. Farias IV, Fratoni E, Theindl LC, Campos AM, Dalmarco EM, Reginatto FH. In Vitro Free Radical
  212. Scavenging Properties and Anti‐Inflammatory Activity of Ilex paraguariensis (Maté) and the Ability of Its
  213. Major Chemical Markers to Inhibit the Production of Proinflammatory Mediators. Mediators Inflammat.
  214. ; 2021(1): 7688153. [https://doi.org/10.1155/2021/7688153].
  215. Cogoi L, Marrassini C, Saint Martin EM, Alonso MR, Filip R, Anesini C. Inhibition of Glycation End
  216. Products Formation and Antioxidant Activities of Ilex paraguariensis: comparative study of fruit and leaves
  217. extracts. J Pharmacopunct. 2023; 26(4): 338–347. [https://doi.org/10.3831%2FKPI.2023.26.4.338].
  218. Lutomski P, Gozdziewska M, Florek-Luszczki M. Health properties of yerba mate. Annals Agric Environ
  219. Medic. 2020; 27(2): 310-313. [http://dx.doi.org/10.26444/aaem/119994].
  220. Bojić M, Haas VS, Šarić D, Maleš Ž. Determination of flavonoids, phenolic acids, and xanthines in mate
  221. tea (Ilex paraguariensis St.-Hil.). J Anal Methods Chem. 2013; 2013(1): 658596. Available in:
  222. [https://onlinelibrary.wiley.com/doi/full/10.1155/2013/658596].
  223. Braghini F, De Carli CG, Bonsaglia B, Silveira Jr JFS, Oliveira DF, Tramujas J, et al. Composição físicoquímica de erva-mate, antes e após simulação do chimarrão. Pesq Agropec Gaúcha. 2014; 20(1/2): 7-15.
  224. Available in: [https://revistapag.agricultura.rs.gov.br/ojs/index.php/revistapag/article/view/63/48].
  225. Silveira TFF, Meinhart AD, Coutinho JP, Souza TCL, Cunha ECE, Moraes MR, et al. Content of lutein
  226. in aqueous extracts of yerba mate (Ilex paraguariensis St. Hil). Food Res Int. 2016; 82: 165-171.
  227. [https://doi.org/10.1016/j.foodres.2015.12.033].
  228. Barbosa P, Pala D, Silva C, Souza M, Volp AC, Freitas R. P46 Acaí pulp (Euterpe oleraceae Martius)
  229. consumption improves lipidic peroxidation markers in healthy women. Biochem Pharmacol. 2017; 139:
  230. [https://doi.org/10.1016/j.bcp.2017.06.047].
  231. Pontes VCB, Tavares JPTM, Rosenstock TR, Rodrigues DS, Yudi MI, Soares JPM, et al. Increased
  232. acute blood flow induced by the aqueous extract of Euterpe oleracea Mart. fruit pulp in rats in vivo is not
  233. related to the direct activation of endothelial cells. J Ethnopharmacol. 2021; 271: 113885.
  234. [https://doi.org/10.1016/j.jep.2021.113885].
  235. Romão MH, De Bem GF, Santos IB, Soares RA, Ognibene DT, Moura RS, et al. Açaí (Euterpe oleracea
  236. Mart.) seed extract protects against hepatic steatosis and fibrosis in high-fat diet-fed mice: Role of local
  237. renin-angiotensin system, oxidative stress and inflammation. J Funct Foods. 2020; 65: 103726.
  238. [https://doi.org/10.1016/j.jff.2019.103726].
  239. Dias-Souza MV, Dos Santos RM, Cerávolo IP, Cosenza G, Marçal PHF. Euterpe oleracea pulp extract:
  240. Chemical analyses, antibiofilm activity against Staphylococcus aureus, cytotoxicity and interference on the activity of antimicrobial drugs. Microb Pathog. 2018; 114: 29-35.[
  241. https://doi.org/10.1016/j.micpath.2017.11.006].
  242. Souza-Monteiro JR, Hamoy M, Santana-Coelho D, Arrifano GP, Paraense RS, Costa-Malaquias A, et
  243. al. Anticonvulsant properties of Euterpe oleracea in mice. Neurochem Int. 2015; 90: 20-27.
  244. [https://doi.org/10.1016/j.neuint.2015.06.014].
  245. Di Ottavio F, Gauglitz JM, Ernst M, Panitchpakdi MW, Fanti F, Compagnone D, et al. A UHPLC-HRMS
  246. based metabolomics and chemoinformatics approach to chemically distinguish ‘super foods’ from a variety
  247. of plant-based foods. Food Chem. 2020; 313: 126071. [https://doi.org/10.1016/j.foodchem.2019.126071].
  248. Kiran S, Kujur A, Prakash B. Assessment of preservative potential of Cinnamomum zeylanicum Blume
  249. essential oil against food borne molds, aflatoxin B1 synthesis, its functional properties and mode of action.
  250. Innov Food Sci Emerg Technol. 2016; 37: 184-191. [https://doi.org/10.1016/j.ifset.2016.08.018].
  251. Ranucci D, Branciari R, Cobellis G, Acuti G, Miraglia D, Olivieri O, et al. Dietary essential oil mix improves
  252. oxidative stability and hygienic characteristics of lamb meat. Small Rumin Res. 2019; 175: 104-109.
  253. [https://doi.org/10.1016/j.smallrumres.2019.04.012].
  254. Matsuura E, Godoy JSR, Bonfim-Mendonça PS, Mello JCP, Svidzinski TIE, Gasparetto A, et al. In vitro
  255. effect of Paullinia cupana (guarana) on hydrophobicity, biofilm formation, and adhesion of Candida albicans
  256. to polystyrene, composites, and buccal epithelial cells. Arch Oral Biol. 2015; 60: 471-478.
  257. [https://doi.org/10.1016/j.archoralbio.2014.05.026].
  258. Rangel MP, De Mello JCP, Audi EA. Evaluation of neurotransmitters involved in the anxiolytic and
  259. panicolytic effect of the aqueous fraction of Paullinia cupana (guarana) in elevated T maze. Rev Bras
  260. Farmacogn. 2013; 23(2): 358-365. [https://doi.org/10.1590/S0102-695X2013005000024].
  261. Silva GS, Canuto KM, Ribeiro PRV, De Brito ES, Nascimento MM, Zocolo GJ, et al. Chemical profiling
  262. of guarana seeds (Paullinia cupana) from different geographical origins using UPLC-QTOF-MS combined
  263. with chemometrics. Food Res Int. 2017; 102: 700-709. [https://doi.org/10.1016/j.foodres.2017.09.055].
  264. Cadoná FC, Rosa JL, Schneider T, Cubillos-Rojas M, Sánchez-Tena S, Azzolin VF, et al. Guarana, a
  265. highly caffeinated food, presents in vitro antitumor activity in colorectal and breast cancer cell lines by
  266. inhibiting AKT/mTOR/S6K and MAPKs pathways. Nutr Cancer. 2017; 69(5): 800-810.
  267. [https://doi.org/10.1080/01635581.2017.1324994].
  268. Półtorak A, Marcinkowska-Lesiak M, Lendzion K, Moczkowska M, Onopiuk A, Wojtasik-Kalinowska I, et
  269. al. Evaluation of the antioxidant, anti-inflammatory and antimicrobial effects of catuaba, galangal, roseroot,
  270. maca root, guarana and polyfloral honey in sausages during storage. LWT. 2018; 96: 364-370.
  271. [https://doi.org/10.1016/j.lwt.2018.05.035].
  272. Portella RDL, Barcelos RP, Rosa EJF, Ribeiro EE, Cruz IBM, Suleiman L, et al. Guarana (Paullinia
  273. cupana Kunth) effects on LDL oxidation in elderly people: an in vitro and in vivo study. Lipids Health Dis.
  274. ; 12(1): 1-9. [https://doi.org/10.1186/1476-511X-12-12].
  275. Frimpong G, Adotey J, Ofori-Kwakye K, Kipo SL, Dwomo-Fokuo Y. Potential of aqueous extract of
  276. Hibiscus sabdariffa calyces as colouring agent in three paediatric oral pharmaceutical formulations.
  277. J Appl Pharm Sci. 2014; 4(12): 001-007. [https://dx.doi.org/10.7324/JAPS.2014.41201].
  278. Wang J, Cao X, Jiang H, Qi Y, Chin KL, Yue Y. Antioxidant activity of leaf extracts from different Hibiscus
  279. sabdariffa accessions and simultaneous determination five major antioxidant compounds by LC-Q-TOF-MS.
  280. Molecules. 2014; 19(12): 21226-21238. [https://doi.org/10.3390/molecules191221226].
  281. Huang HC, Chang WT, Wu YH, Yang BC, Xu MR, Lin MK, et al. Phytochemicals levels and biological
  282. activities in Hibiscus sabdariffa L. were enhanced using microbial fermentation. Ind Crops Prod. 2022; 176:
  283. [https://doi.org/10.1016/j.indcrop.2021.114408].
  284. Higginbotham KL, Burris KP, Zivanovic S, Davidson PM, Stewart Jr CN. Aqueous extracts of Hibiscus
  285. sabdariffa calyces as an antimicrobial rinse on hot dogs against Listeria monocytogenes and methicillinresistant Staphylococcus aureus. Food Control. 2014; 40: 274-277.
  286. [https://doi.org/10.1016/j.foodcont.2013.12.011].
  287. Nafizah AHN, Budin SB, Santhana RL, Osman M, Hanis MIM, Jamaludin M. Aqueous calyxes extract of
  288. Roselle or Hibiscus sabdariffa Linn supplementation improves liver morphology in streptozotocin induced
  289. diabetic rats. Arab J Gastroenterol. 2017; 18(1): 13-20. [https://doi.org/10.1016/j.ajg.2017.02.001].
  290. Ogundele OM, Awolu OO, Badejo AA, Nwachukwu ID, Fagbemi TN. Development of functional
  291. beverages from blends of Hibiscus sabdariffa extract and selected fruit juices for optimal antioxidant
  292. properties. Food Sci Nutr. 2016; 4(5): 679-685. [https://doi.org/10.1002/fsn3.331].
  293. Chakraborty A, Devi RKB, Rita S, Sharatchandra KH, Singh TI. Preliminary studies on anti-inflammatory
  294. and analgesic activities of Spilanthes acmella in experimental animal models. Indian J Pharmacol. 2004;
  295. (3): 148-150. Available in:
  296. [https://journals.lww.com/iphr/fulltext/2004/36030/preliminary_studies_on_antiinflammatory_and.4.aspx].
  297. Ley JP, Krammer G, Looft J, Reinders G, Bertram HJ. Structure-activity relationships of trigeminal effects
  298. for artificial and naturally occurring alkamides related to spilanthol. In: Dev Food Sci. Elsevier. 2006; 43: 21-
  299. [https://doi.org/10.1016/S0167-4501(06)80006-3].
  300. Wu LC, Fan NC, Lin MH, Chu IR, Huang SJ, Hu CY, et al. Anti-inflammatory effect of spilanthol from
  301. Spilanthes acmella on murine macrophage by down-regulating LPS-induced inflammatory mediators. J
  302. Agric Food Chem. 2008; 56 (7): 2341-2349. Available in: [https://pubs.acs.org/doi/full/10.1021/jf073057e].
  303. Chakraborty A, Devi RKB, Sanjebam R, Khumbong S, Thokchom IS. Preliminary studies on local
  304. anesthesic and antipyretic activies of Spilanthes acmella Murr. in experimental animals models. Indian
  305. J Pharmacol. 2010; 42(5): 277-279. [https://doi.org/10.4103/0253-7613.70106].
  306. Ratnasoorya WD, Pieris KPP, Samaratunga U, Jayakody JRAC. Diuretic activity of Spilanthes acmella
  307. flowers in rats. J Ethnopharmacol. 2004; 91: 317-320. [https://doi.org/10.1016/j.jep.2004.01.006].
  308. Ekanem AP, Wang M, Simon JE, Moreno DA. Antiobesity properties of two African plants (Afromomum
  309. meleguetta and Spilanthes acmella) by pancreatic lipase inhibition. Phytother Res. 2007; 21(12): 1253-
  310. [https://doi.org/10.1002/ptr.2239].
  311. Sharma V, Boonen J, Chauhan NS, Thakur M, Spiegeleer BDE, Dixit VK. Spilanthes acmella ethanolic
  312. flower extract: LC-MS alkylamide profiling and its effects on sexual behavior in male rats. Phytomedicine.
  313. ; 18(13) 1161–1169. [https://doi.org/10.1016/j.phymed.2011.06.001].
  314. Anesini C, Turner S, Cogoi L, Filip R. Study of the participation of caffeine and polyphenols on the
  315. overall antioxidant activity of mate (Ilex paraguariensis). LWT-Food Science and Technol. 2012; 45(2):
  316. -304. [https://doi.org/10.1016/j.lwt.2011.06.015].
  317. Peres RG, Tonin FG, Tavares MF, Rodriguez-Amaya DB. HPLC-DAD-ESI/MS identification and
  318. quantification of phenolic compounds in Ilex paraguariensis beverages and on-line evaluation of individual
  319. antioxidant activity. Molecules. 2013; 18(4): 3859-3871. [https://doi.org/10.3390/molecules18043859].
  320. Blum-Silva CH, Chaves VC, Schenkel EP, Coelho GC, Reginatto FH. The influence of leaf age on
  321. methylxanthines, total phenolic content, and free radical scavenging capacity of Ilex paraguariensis aqueous
  322. extracts. Rev Bras Farmacogn. 2015; 25: 1-6. [https://doi.org/10.1016/j.bjp.2015.01.002].
  323. Brasilino MS, Pereira AAF, Zepponi KMC, Chaves Neto AHC, Carvalho AAF, Nakamune ACDMS. Erva
  324. mate minimiza as alterações do perfil lipídico promovidas por elevado consumo de sacarose. Arch Health
  325. Investig. 2013; 2(5). Available in: [https://archhealthinvestigation.emnuvens.com.br/ArcHI/article/view/310].
  326. Fagundes A, Danguy LB, Schmitt V, Mazur CE. Ilex paraguariensis: bioactive compounds and
  327. nutritional properties in health. Rev Bras Obes Nutr Emagrec. 2015; 9(53): 213-223. Available in:
  328. [https://link.gale.com/apps/doc/A531171232/AONE?u=unicamp_br&sid=googleScholar&xid=7b9055bc].
  329. Pereira DF, Kappel VD, Cazarolli LH, Boligon AA, Athayde ML, Guesser SM, et al. Influence of the
  330. traditional Brazilian drink Ilex paraguariensis tea on glucose homeostasis. Phytomedicine. 2012; 19(10):
  331. -877. [https://doi.org/10.1016/j.phymed.2012.05.008].
  332. Gambero A, Ribeiro ML. The positive effects of yerba maté (Ilex paraguariensis) in obesity. Nutrients.
  333. ; 7(2): 730-750. [https://doi.org/10.3390/nu7020730].
  334. Rocha DS, Casagrande L, Model JFA, Dos Santos JT, Hoefel AL, Kucharski LC. Effect of yerba mate
  335. (Ilex paraguariensis) extract on the metabolism of diabetic rats. Biomed Pharmacother. 2018; 105: 370-
  336. [https://doi.org/10.1016/j.biopha.2018.05.132].
  337. Lima ME, Colpo AZC, Rosa H, Salgueiro ACF, Silva MP, Noronha DS, et al. Ilex paraguariensis extracts
  338. reduce blood glucose, peripheral neuropathy and oxidative damage in male mice exposed to streptozotocin.
  339. J Funct Foods. 2018; 44: 9-16. [https://doi.org/10.1016/j.jff.2018.02.024].
  340. Mejía EG, Song YS, Heck CI, Ramírez-Mares M. Yerba mate tea (Ilex paraguariensis): Phenolics,
  341. antioxidant capacity and in vitro inhibition of colon cancer cell proliferation. J Funct Foods. 2010; 2(1): 23-
  342. [https://doi.org/10.1016/j.jff.2009.12.003].
  343. Arçari DP, Bartchewsky Jr. W, Santos TW, Oliveira KA, Oliveira CC, Gotardo EM, et al. Antiinflammatory effects of yerba maté extract (Ilex paraguariensis) ameliorate insulin resistance in mice with
  344. high fat diet-induced obesity. Molec Cell Endocrinol. 2011; 335(2): 110-115.
  345. [https://doi.org/10.1016/j.mce.2011.01.003].
  346. Puangpraphant S, Dia VP, De Mejia EG, Garcia G, Berhow MA, Wallig MA. Yerba mate tea and mate
  347. saponins prevented azoxymethane‐induced inflammation of rat colon through suppression of NF‐κB
  348. p65ser311 signaling via IκB‐α and GSK‐3β reduced phosphorylation. Biofactors. 2013; 39(4): 430-440.
  349. [https://doi.org/10.1002/biof.1083].
  350. Yu S, Wei SY, Liu Z, Zhang T, Xiang N, Fu H. Yerba mate (Ilex paraguariensis) improves
  351. microcirculation of volunteers with high blood viscosity: A randomized, double blind, placebo-controlled trial.
  352. Exp Gerontol. 2015; 62: 14-22. DOI: [https://doi.org/10.1016/j.exger.2014.12.016].
  353. Veiga DTA, Bringhenti R, Copes R, Tatsch E, Moresco RN, Comim FV, et al. Protective effect of yerba
  354. mate intake on the cardiovascular system: a post hoc analysis study in postmenopausal women. Braz J
  355. Med Biol Res. 2018; 51(6): e7253. [https://doi.org/10.1590/1414-431X20187253].
  356. Xu GH, Kim YH, Choo SJ, Ryoo IJ, Yoo JK, Ahn JS, et al. Chemical constituents from the leaves of
  357. Ilex paraguariensis inhibit human neutrophil elastase. Arch Pharm Res. 2009; 32(9): 1215-1220.
  358. [https://doi.org/10.1007/s12272-009-1905-7].
  359. Conforti AS, Gallo ME, Saraví FD. Yerba Mate (Ilex paraguariensis) consumption is associated with
  360. higher bone mineral density in postmenopausal women. Bone. 2012; 50(1): 9-13.
  361. [https://doi.org/10.1016/j.bone.2011.08.029].
  362. Ribeiro MC, Santos Â, Riachi LG, Rodrigues ACB, Coelho GC, Marcellini PS, et al. The effects of
  363. roasted yerba mate (Ilex paraguariensis A. ST. Hil.) consumption on glycemia and total serum creatine
  364. phosphokinase in patients with traumatic brain injury. J Funct Foods. 2017; 28: 240-245.
  365. [https://doi.org/10.1016/j.jff.2016.11.024].
  366. Zawadzki A, Arrivetti LO, Vidal MP, Catai JR, Nassu RT, Tullio RR, Cardoso DR, et al. Mate extract as
  367. feed additive for improvement of beef quality. Food Res Int. 2017; 99: 336-347.
  368. [https://doi.org/10.1016/j.foodres.2017.05.033].
  369. Jose AJ, Leela NK, Zachariah TJ, Rema J. Evaluation of coumarin content and essential oil constituents
  370. in Cinnamomum cassia (Nees & T. Nees) J. Presl. J Spices Arom Crops. 2019; 28(1): 43–51.
  371. [https://doi.org/10.25081/josac.2019.v28.i1.5743].
  372. Ferreira ACA, Souza PA. Aspectos nutricionais do jambu, Acmella oleracea: uma revisão bibliográfica.
  373. In: Ciênc Aliment Pesq Aplic. Editora Poisson. 2023; 1. [https://doi.org/10.36229/978-65-5866-376-8].
  374. Talaat SM. Role of Cinnamon Supplementation on Glycemic Markers, Lipid Profile and Weight Status
  375. in Patients with Type II Diabetes. ARO-The Scient J Koya Univ. 2023; 11 (1): 1-9.
  376. [https://doi.org/10.14500/aro.11041].
  377. Araujo ECG, Silva TC, Cunha Neto EM, Favarin JAS, Silva JKG, Chagas KPT, Maia E, et al.
  378. Bioeconomy in the Amazon: Lessons and gaps from thirty years of non-timber forest products research. J
  379. Environ Manag. 2024; 370: 122420. [https://doi.org/10.1016/j.jenvman.2024.122420].
  380. Silva LN, Oliveira EC, Baratto LC. Amazonian useful plants described in the book “Le Pays des
  381. Amazones” (1885) of the Brazilian propagandist Baron de Santa-Anna Nery: a historical and ethnobotanical
  382. perspective. J Ethnobiol Ethnomed. 2024; 20(1): 26. [https://doi.org/10.1186/s13002-024-00663-2].
  383. Skendi A, Irakli M, Chatzopoulou P, Bouloumpasi E, Biliaderis CG. Phenolic extracts from solid wastes
  384. of the aromatic plant essential oil industry: Potential uses in food applications. Food Chem Adv. 2022; 1:
  385. [https://doi.org/10.1016/j.focha.2022.100065].
  386. Ağagündüz D, Şahin TÖ, Yilmaz B, Ekenci KD, Duyar Özer Ş, Capasso R. Cruciferous vegetables and
  387. their bioactive metabolites: from prevention to novel therapies of colorectal cancer. Evid Based Compl
  388. Altern Med. 2022; 2022(1): 1534083. [https://doi.org/10.1155/2022/1534083].

Autor(es)

Métricas

  • Artigo visto 60 vez(es)

Como Citar

1.
Uma revisão de seis plantas medicinais e aromáticas e seus benefícios para a saúde. Rev Fitos [Internet]. 7º de abril de 2025 [citado 27º de abril de 2025];19:e1667. Disponível em: https://revistafitos.far.fiocruz.br/index.php/revista-fitos/article/view/1667
Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Copyright (c) 2025 Revista Fitos

Informe um erro