Canabidiol, ansiedade e memórias aversivas: uma revisão das evidências pré-clínicas

Marina Aparecida Magnini Portes
OrcID
Isabel Werle
OrcID
Luciane Alfaia Soares
OrcID
Fernanda de Souza Guterres
OrcID
Leandro Jose Bertoglio
OrcID

    Marina Aparecida Magnini Portes

    Universidade Federal de Santa Catarina

    OrcID https://orcid.org/0009-0001-3246-1771

    Farmacêutica pela Universidade Estadual de Ponta Grossa e Doutora em Farmacologia pela Universidade Federal de Santa Catarina. Durante 6 meses, atuou em estágio de pesquisa científica no Centro de Neurociências e Biologia Celular em Coimbra (Portugal), adquirindo conhecimentos sobre identificação de proteínas (imunocitoquímica) e obtenção de registros eletrofisiológicos no encéfalo de roedores. Possui amplo conhecimento em Farmacologia (ênfase em Neuropsicofarmacologia), Neurociências, Patologia e Fisiologia Humana, bem como experiência em técnicas básicas de cultivo celular e experimentação animal. Dentre suas principais habilidades técnicas estão: pesquisa em bases de dados científicos; elaboração, análise, planejamento e execução de projetos de pesquisa científica; análise estatística e interpretação de dados científicos; preparo e execução de apresentações orais de caráter educacional, tais como aulas, palestras e treinamentos; organização e divulgação de eventos; participação em processos de seleção, programação, aquisição, armazenamento, distribuição, utilização (prescrição e dispensação) e descarte de medicamentos e insumos; trabalho em equipe e liderança; conhecimentos básicos em informática; inglês intermediário. Responsável, dedicada, dinâmica e comunicativa, busca se envolver em atividades de ensino, pesquisa e promoção da saúde, que possibilitem a utilização de suas habilidades pessoais e profissionais prévias, bem como propiciem o desenvolvimento de novas competências.

    Isabel Werle

    Universidade Federal de Santa Catarina

    OrcID https://orcid.org/0000-0002-0870-1405

    Farmacêutica e mestra em Farmacologia pela Universidade Federal de Santa Catarina (UFSC). Durante a graduação, fui aluna de Iniciação Científica avaliando o efeito de compostos naturais e sintéticos em modelos animais de depressão e posteriormente na área de investigação da resposta imune de pacientes infectados pelo SARS-CoV-2. Atualmente sou aluna de doutorado no Laboratório de Neuropsicofarmacologia (LNPF) do Programa de Pós Graduação em Farmacologia (PPGFMC) da UFSC, onde também desenvolvi meu mestrado. No LNPF, sob orientação do professor Dr. Leandro José Bertoglio, realizo pesquisas envolvendo psicofarmacologia e neurobiologia da memória, focando no envolvimento do sistema serotonérgico na extinção de memórias aversivas contextuais. 

    Luciane Alfaia Soares

    Universidade Federal de Santa Catarina

    OrcID https://orcid.org/0000-0002-7769-9396

    Farmacêutica (2023) e Bacharela em saúde (2018), formada pela Universidade Federal do Oeste do Pará. Desenvolveu iniciação à pesquisa científica na área de Toxicologia com ênfase na saúde da mulher e contraceptivos de emergência (2018-2019). Foi bolsista de pesquisa do Ministério da Cidadania com ênfase no Projeto de Avaliação do Impacto do Programa Criança Feliz no Estado do Pará (2018-2019). Além disso, participou como voluntaria no projeto PIBEX Promoção à Saúde das Mulheres que Trabalham no Aterro Controlado do Perema em Santarém/Pará (2017), após isso também participou como palestrante voluntária no programa PIBEX do projeto Desenvolvimento de um Serviço de Atenção Farmacêutica a Usuárias de Contraceptivos de Emergência (2018-2019). E voluntaria na Fundação Oswaldo Cruz (FIOCRUZ), atuando como pesquisadora de campo no projeto Atenção Primária à Saúde em Territórios Rurais e Remotos no Brasil (2019). Possui Mestrado em Farmacologia pela Universidade Federal de Santa Catarina (UFSC), na área de Neurobiologia Comportamental com ênfase em memorias aversivas. Atualmente doutoranda em Farmacologia do programa de pós-graduação da UFSC em Florianópolis, na área de neuropsicofarmacologia, estudando e analisando a eficácia da combinação de fármacos para interferir com o processo de desestabilização-reconsolidação de memórias traumáticas em ratos machos e fêmeas. 

    Fernanda de Souza Guterres

    Universidade Federal de Santa Catarina

    OrcID https://orcid.org/0009-0004-0224-9413

    Biomédica formada pela Universidade Feevale (2023), durante minha graduação participei de projetos de Iniciação Científica na área de Toxicologia, com ênfase no monitoramento terapêutico de fármacos. Avaliei a adesão terapêutica de pacientes com Leucemia Mielóide Crônica e participei da validação de métodos analíticos para a dosagem de quimioterápicos em amostras alternativas. Atualmente, sou aluna de mestrado no Laboratório de Neuropsicofarmacologia (LNPF) do Programa de Pós-Graduação em Farmacologia (PPGFMC) da UFSC. No LNPF, sob orientação do professor Dr. Leandro Bertoglio, realizo pesquisas em psicofarmacologia e neurobiologia da memória, focando no uso de fármacos capazes de modular memórias aversivas.

    Leandro Jose Bertoglio

    Universidade Federal de Santa Catarina

    OrcID https://orcid.org/0000-0003-2876-1146

    Professor Titular no Departamento de Farmacologia da UFSC. Tem experiência e contribuição científica nas áreas de neuropsicofarmacologia e neurociências, nas quais investiga os efeitos de substâncias canabinoides e psicodélicas sobre a ansiedade e o processo de aprendizagem e memória aversiva. Uma das metas é identificar uma estratégia mais eficaz do que as atuais para mitigar memórias traumáticas por meio da facilitação da extinção ou interferência com a reconsolidação. Membro da SBFTE, SBNeC, SfN (EUA) e ReBraEM (Rede Brasileira de Estudos da Memória). Foi Chefe do Departamento por 4 anos. Coordenou o Mestrado Profissional em Farmacologia (MP-FMC) por 4 anos. Foi Subcoordenador do Programa de Pós-Graduação em Farmacologia (PPG-FMC) por 2 anos. Foi representante do Centro de Ciências Biológicas na Câmara de Pós-Graduação (CPG). Foi representante da CPG no Conselho Universitário.


Palavras-chave

Cannabis
Córtex pré-frontal
Amígdala
Hipocampo
THC

Resumo

O canabidiol (CBD) é um fitocanabinoide que apresenta várias propriedades psicotrópicas com potencial
terapêutico que têm sido melhor compreendidas através de estudos pré-clínicos que avaliam os alvos
moleculares e regiões encefálicas envolvidas. Esta revisão narrativa compila e discute estudos que
investigaram os efeitos do CBD sobre a extinção e reconsolidação de memórias aversivas, bem como sobre
a expressão de medo e ansiedade em ratos e camundongos. Os resultados obtidos sugerem que a
administração de CBD prejudica a reconsolidação de memórias aversivas, pode acelerar a extinção, além
de reduzir comportamentos relacionados ao medo e à ansiedade. Essas ações envolvem principalmente a
ativação de receptores canabinoides do tipo 1 (CB1) e de serotonina do tipo 1A (5-HT1A) expressos em
diferentes regiões encefálicas. Entretanto, os efeitos do CBD em protocolos que induzem a formação de
memórias com características traumáticas e respostas de medo/ansiedade inadequadas ainda
permanecem poucos explorados. Outras três lacunas de conhecimento a serem exploradas incluem as
diferenças sexuais, a suscetibilidade à interferência em memórias aversivas/traumáticas remotas, e os
efeitos de regimes de tratamento repetidos. Compreender as bases farmacológicas do CBD é essencial
para estabelecer sua eficácia, segurança e potencial aplicação no tratamento de transtornos de ansiedade
e estresse em humanos. 

Referências

  1. Guimarães FS. Historical perspective on the therapeutic potential of cannabidiol. Int Rev Neurobiol. 2024; 177:1-9. [https://doi.org/10.1016/bs.irn.2024.03.008].
  2. Lisboa SF, Stern CAJ, Gazarini L, Bertoglio LJ. Cannabidiol effects on fear processing and implications for PTSD: Evidence from rodent and human studies. Int Rev Neurobiol. 2024; 177: 235-250. [https://doi.org/10.1016/bs.irn.2024.03.007].
  3. Lee JLC, Bertoglio LJ, Guimarães FS, Stevenson CW. Cannabidiol regulation of emotion and emotional memory processing: relevance for treating anxiety-related and substance abuse disorders. Br J Pharmacol. 2017 Oct; 174(19): 3242-3256. [https://doi.org/10.1111/bph.13724].
  4. Stern CAJ, de Carvalho CR, Bertoglio LJ, Takahashi RN. Effects of Cannabinoid Drugs on Aversive or Rewarding Drug-Associated Memory Extinction and Reconsolidation. Neuroscience. 2018 Feb 1; 370: 62-80. [https://doi.org/10.1016/j.neuroscience.2017.07.018].
  5. Simei JLQ, de Souza JDR, Lisboa JR, Guimarães FS, Crippa JAS. Cannabidiol in anxiety disorders: Current and future perspectives. Int Rev Neurobiol. 2024; 177: 205-234. [https://doi.org/10.1016/bs.irn.2024.05.003].
  6. Campos AC, Fogaça MV, Aguiar DC, Guimarães FS. Animal models of anxiety disorders and stress. Braz J Psychiatry. 2013; 35 Suppl 2: S101-11. [https://doi.org/10.1590/1516-4446-2013-1139].
  7. McNaughton N, Corr PJ. A two-dimensional neuropsychology of defense: fear/anxiety and defensive distance. Neurosci Biobehav Rev. 2004 May; 28(3): 285-305. [https://doi.org/10.1016/j.neubiorev.2004.03.005].
  8. Carobrez AP, Bertoglio LJ. Ethological and temporal analyses of anxiety-like behavior: the elevated plus-maze model 20 years on. Neurosci Biobehav Rev. 2005; 29(8): 1193-205. [https://doi.org/10.1016/j.neubiorev.2005.04.017].
  9. Bourin M, Hascoët M. The mouse light/dark box test. Eur J Pharmacol. 2003 Feb 28; 463(1-3): 55-65. [https://doi.org/10.1016/s0014-2999(03)01274-3].
  10. File SE, Seth P. A review of 25 years of the social interaction test. Eur J Pharmacol. 2003 Feb 28; 463(1-3): 35-53. [https://doi.org/10.1016/s0014-2999(03)01273-1].
  11. Millan MJ, Brocco M. The Vogel conflict test: procedural aspects, gamma-aminobutyric acid, glutamate and monoamines. Eur J Pharmacol. 2003 Feb 28; 463(1-3): 67-96. [https://doi.org/10.1016/s0014-2999(03)01275-5].
  12. Samuels BA, Hen R. Novelty-Suppressed Feeding in the Mouse. In: T. Gould (Eds.), Mood and Anxiety Related Phenotypes in Mice. Neuromethods 2011; 63: 107-21. Humana Press. [https://doi.org/10.1007/978-1-61779-313-4_7].
  13. De Brouwer G, Fick A, Harvey BH, Wolmarans W. A critical inquiry into marble-burying as a preclinical screening paradigm of relevance for anxiety and obsessive-compulsive disorder: Mapping the way forward. Cogn Affect Behav Neurosci. 2019 Feb; 19(1): 1-39. [https://doi.org/0.3758/s13415-018-00653-4].
  14. Prut L, Belzung C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol. 2003 Feb 28; 463(1-3): 3-33. [https://doi.org/10.1016/s0014-2999(03)01272-x].
  15. Dielenberg RA, McGregor IS. Defensive behavior in rats towards predatory odors: a review. Neurosci Biobehav Rev. 2001 Dec; 25(7-8): 597-609. [https://doi.org/10.1016/s0149-7634(01)00044-6].
  16. Junior Zangrossi H, Graeff FG. Serotonin in anxiety and panic: contributions of the elevated T-maze. Neurosci Biobehav Rev. 2014 Oct; 46 (Pt 3): 397-406. [https://doi.org/10.1016/j.neubiorev.2014.03.007].
  17. Soares VP, Campos AC, Bortoli VC, Junior Zangrossi H, Guimarães FS, Zuardi AW. Intra-dorsal periaqueductal gray administration of cannabidiol blocks panic-like response by activating 5-HT1A receptors. Behav Brain Res. 2010; 213(2): 225–229. [https://doi.org/10.1016/j.bbr.2010.05.004].
  18. Izquierdo I, Furini CR, Myskiw JC. Fear Memory. Physiol Rev. 2016 Apr; 96(2): 695-750. [https://doi.org/10.1152/physrev.00018.2015].
  19. Kida S. Interaction between reconsolidation and extinction of fear memory. Brain Res Bull. 2023 Apr; 195: 141-144. [https://doi.org/10.1016/j.brainresbull.2023.02.009].
  20. Bouton ME, Maren S, McNally GP. Behavioral and Neurobiological Mechanisms of Pavlovian and Instrumental Extinction Learning. Physiol Rev. 2021 Apr 1; 101(2) :611-681. [https://doi.org/10.1152/physrev.00016.2020].
  21. Lee JLC, Nader K, Schiller D. An Update on Memory Reconsolidation Updating. Trends Cogn Sci. 2017 Jul; 21(7): 531-545. [https://doi.org/10.1016/j.tics.2017.04.006].
  22. Walsh KH, Das RK, Saladin ME, Kamboj SK. Modulation of naturalistic maladaptive memories using behavioural and pharmacological reconsolidation-interfering strategies: a systematic review and meta-analysis of clinical and 'sub-clinical' studies. Psychopharmacol. 2018 Sep; 235(9): 2507-2527. [https://doi.org/10.1007/s00213-018-4983-8].
  23. Bandelow B, Baldwin D, Abelli M, Altamura C, Dell'Osso B, Domschke K, et al. Biological markers for anxiety disorders, OCD and PTSD - a consensus statement. Part I: Neuroimaging and genetics. World J Biol Psychiatry. 2016 Aug; 17(5): 321-65. [https://doi.org/10.1080/15622975.2016.1181783].
  24. Bandelow B et al. Biological markers for anxiety disorders, OCD and PTSD: A consensus statement. Part II: Neurochemistry, neurophysiology and neurocognition. World J Biol Psychiatry. 2017 Apr; 18(3): 162-214. [https://doi.org/10.1080/15622975.2016.1190867].
  25. Raymundi AM, da Silva TR, Sohn JMB, Bertoglio LJ, Stern CA. Effects of ∆9-tetrahydrocannabinol on aversive memories and anxiety: a review from human studies. BMC Psychiatry. 2020 Aug 26; 20(1): 420. [https://doi.org/10.1186/s12888-020-02813-8].
  26. Bitencourt RM, Pamplona FA, Takahashi RN. Facilitation of contextual fear memory extinction and anti-anxiogenic effects of AM404 and cannabidiol in conditioned rats. Eur Neuropsychopharmacol. 2008 Dec; 18(12): 849-59. [https://doi.org/10.1016/j.euroneuro.2008.07.001].
  27. Bodor AL, et al. Endocannabinoid signaling in rat somatosensory cortex: laminar differences and involvement of specific interneuron types. J Neurosci. 2005 Jul 20; 25(29): 6845-56. [https://doi.org/10.1523/JNEUROSCI.0442-05.2005].
  28. Wedzony K, Chocyk A. Cannabinoid CB1 receptors in rat medial prefrontal cortex are colocalized with calbindin- but not parvalbumin- and calretinin-positive GABA-ergic neurons. Pharmacol Rep. 2009 Nov-Dec; 61(6): 1000-7. [https://doi.org/10.1016/s1734-1140(09)70161-6].
  29. Tsou K, Brown S, Sañudo-Peña MC, Mackie K, Walker JM. Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neuroscience. 1998 Mar; 83(2): 393-411. [https://doi.org/10.1016/s0306-4522(97)00436-3].
  30. Vidal-Gonzalez I, Vidal-Gonzalez B, Rauch SL, Quirk GJ. Microstimulation reveals opposing influences of prelimbic and infralimbic cortex on the expression of conditioned fear. Learn Mem. 2006 Nov-Dec; 13(6): 728-33. [https://doi.org/10.1101/lm.306106].
  31. Laurent V, Westbrook RF. Inactivation of the infralimbic but not the prelimbic cortex impairs consolidation and retrieval of fear extinction. Learn Mem. 2009 Aug 25; 16(9): 520-9. [https://doi.org/10.1101/lm.1474609].
  32. Sierra-Mercado D, Padilla-Coreano N, Quirk G. Dissociable Roles of Prelimbic and Infralimbic Cortices, Ventral Hippocampus, and Basolateral Amygdala in the Expression and Extinction of Conditioned Fear. Neuropsychopharmacology. 2011; 36: 529–538. [https://doi.org/10.1038/npp.2010.184].
  33. Földy C, Neu A, Jones MV, Soltesz I. Presynaptic, activity-dependent modulation of cannabinoid type 1 receptor-mediated inhibition of GABA release. J Neurosci. 2006 Feb 1; 26(5): 1465-9. [https://doi.org/10.1523/JNEUROSCI.4587-05.2006].
  34. Do Monte FH, Souza RR, Bitencourt RM, Kroon JA, Takahashi RN. Infusion of cannabidiol into infralimbic cortex facilitates fear extinction via CB1 receptors. Behav Brain Res. 2013 Aug 1; 250:23-7. [https://doi.org/10.1016/j.bbr.2013.04.045].
  35. Song C, Stevenson CW, Guimaraes FS, Lee JL. Bidirectional Effects of Cannabidiol on Contextual Fear Memory Extinction. Front Pharmacol. 2016 Dec 16; 7: 493. [https://doi.org/10.3389/fphar.2016.00493].
  36. Shallcross J, Hámor P, Bechard AR, Romano M, Knackstedt L & Schwendt M. The Divergent Effects of CDPPB and Cannabidiol on Fear Extinction and Anxiety in a Predator Scent Stress Model of PTSD in Rats. Front Behav Neurosci. 2019; 13: 91. [https://doi.org/10.3389/fnbeh.2019.00091].
  37. Stern CA, Gazarini L, Takahashi RN, Guimarães FS, Bertoglio LJ. On disruption of fear memory by reconsolidation blockade: evidence from cannabidiol treatment. Neuropsychopharmacology. 2012; 37(9): 2132-2142. [https://doi.org/10.1038/npp.2012.63].
  38. Papagianni EP, Warren WG, Cassaday HJ, Stevenson CW. Cannabidiol Prevents Spontaneous Fear Recovery after Extinction and Ameliorates Stress-Induced Extinction Resistance. Int J Mol Sci. 2022 Aug 19; 23(16): 9333. [https://doi.org/10.3390/ijms23169333].
  39. Penninx BW, Pine DS, Holmes EA & Reif A. Anxiety disorders. Lancet. 2021; 397(10277): 914–927. [https://doi.org/10.1016/S0140-6736(21)00359-7].
  40. Franzen JM, et al. Cannabidiol attenuates fear memory expression in female rats via hippocampal 5-HT1A but not CB1 or CB2 receptors. Neuropharmacology. 2022; 223: 109316. [https://doi.org/10.1016/j.neuropharm.2022.109316]
  41. da Silva TR, Takahashi RN, Bertoglio LJ, Andreatini R, Stern CA. Evidence for an expanded time-window to mitigate a reactivated fear memory by tamoxifen. Eur Neuropsychopharmacol. 2016 Oct; 26(10): 1601-9. [https://doi.org/10.1016/j.euroneuro.2016.08.005].
  42. Franzen JM, Giachero M, Bertoglio LJ. Dissociating retrieval-dependent contextual aversive memory processes in female rats: Are there cycle-dependent differences? Neuroscience. 2019; 406: 542–553. [https://doi.org/10.1016/j.neuroscience.2019.03.035].
  43. Gazarini L, Stern CA, Piornedo RR, Takahashi RN, Bertoglio LJ. PTSD-like memory generated through enhanced noradrenergic activity is mitigated by a dual step pharmacological intervention targeting its reconsolidation. Int J Neuropsychopharmacol. 2014; 18(1): pyu026. [https://doi.org/10.1093/ijnp/pyu026].
  44. Bayer H, Stern CAJ, Troyner F, Gazarini L, Guimarães FS, Bertoglio LJ. Medial prefrontal cortex mechanisms of cannabidiol-induced aversive memory reconsolidation impairments. Neuropharmacol. 2022 Mar 1; 205: 108913. [https://doi.org/10.1016/j.neuropharm.2021.108913].
  45. Franzen JM, Vanz F, Werle I, Guimarães FS, Bertoglio LJ. Cannabidiol impairs fear memory reconsolidation in female rats through dorsal hippocampus CB1 but not CB2 receptor interaction. Eur Neuropsychopharmacol. 2022; 64: 7-18. [https://doi.org/10.1016/j.euroneuro.2022.08.002].
  46. Han X, et al. Comparison between cannabidiol and sertraline for the modulation of post-traumatic stress disorder-like behaviors and fear memory in mice. Psychopharmacol. 2022; 239(5): 1605–1620. [https://doi.org/10.1007/s00213-022-06132-6].
  47. Chen BK, et al. Artificially Enhancing and Suppressing Hippocampus-Mediated Memories. Curr Biol. 2019 Jun 3; 29(11): 1885-1894.e4. [https://doi.org/10.1016/j.cub.2019.04.065].
  48. Gazarini L, Stern CAJ, Bertoglio LJ. On making (and turning adaptive to) maladaptive aversive memories in laboratory rodents. Neurosci Biobehav Rev. 2023 Apr; 147: 105101. [https://doi.org/10.1016/j.neubiorev.2023.105101].
  49. Murkar A, Kent P, Cayer C, James J, Durst T, Merali Z. Cannabidiol and the Remainder of the Plant Extract Modulate the Effects of Δ9-Tetrahydrocannabinol on Fear Memory Reconsolidation. Front Behav Neurosci. 2019; 13: 174. [https://doi.org/10.3389/fnbeh.2019.00174].
  50. Soares LA, et al. Dual-step pharmacological intervention for traumatic-like memories: implications from D-cycloserine and cannabidiol or clonidine in male and female rats. Psychopharmacol. 2024; 241: 1827–1840. [https://doi.org/10.1007/s00213-024-06596-8].
  51. Einarsson EO, Nader K. Involvement of the anterior cingulate cortex in formation, consolidation, and reconsolidation of recent and remote contextual fear memory. Learn Mem. 2012; 19 (10): 449-452. [https://doi.org/10.1101/lm.027227.112].
  52. Stern CA, Gazarini L, Vanvossen AC, Hames MS, Bertoglio LJ. Activity in prelimbic cortex subserves fear memory reconsolidation over time. Learn Mem. 2013; 21(1): 14-20. [https://doi.org/10.1101/lm.032631.113].
  53. Campos AC, Ferreira FR, Guimarães FS. Cannabidiol blocks long-lasting behavioral consequences of predator threat stress: possible involvement of 5HT1A receptors. J Psychiatric Res. 2012; 46(11): 1501–1510. [https://doi.org/10.1016/j.jpsychires.2012.08.012].
  54. Melas PA, Scherma M, Fratta W, Cifani C, Fadda P. Cannabidiol as a Potential Treatment for Anxiety and Mood Disorders: Molecular Targets and Epigenetic Insights from Preclinical Research. Int J Mol Sci. 2021 Feb 13; 22(4): 1863. [https://doi.org/10.3390/ijms22041863].
  55. Stern CAJ, et al. Cannabidiol disrupts the consolidation of specific and generalized fear memories via dorsal hippocampus CB1 and CB2 receptors. Neuropharmacol. 2017; 125: 220-230. [https://doi.org/10.1016/j.neuropharm.2017.07.024].
  56. Elmes MW, Kaczocha M, Berger WT, Leung K, Ralph BP, Wang L, et al. Fatty acid-binding proteins (FABPs) are intracellular carriers for Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). J Biol Chem. 2015; 290(14): 8711-8721. [https://doi.org/10.1074/jbc.M114.618447].
  57. Leishman E, Manchanda M, Thelen R, Miller S, Mackie K, Bradshaw HB. Cannabidiol’s Upregulation of N-acyl Ethanolamines in the Central Nervous System Requires N-acyl Phosphatidyl Ethanolamine-Specific Phospholipase D Cannabis. Cannabinoid Res. 2018; 3 (1): 228-241. [https://doi.org/10.1089/can.2018.0031].
  58. Stern CA et al. Δ9-Tetrahydrocannabinol alone and combined with cannabidiol mitigate fear memory through reconsolidation disruption. Eur Neuropsychopharmacol. 2015; 25(6): 958-965. [https://doi.org/10.1016/j.euroneuro.2015.02.001].
  59. Onaivi ES, Green MR, Martin BR. Pharmacological characterization of cannabinoids in the elevated plus maze. J Pharmacol Exp Ther. 1990 Jun; 253(3): 1002-9. [https://pubmed.ncbi.nlm.nih.gov/2162942/].
  60. Pérez-Valenzuela E et al. Sex-Dependent Synergism of an Edible THC: CBD Formulation in Reducing Anxiety and Depressive-like Symptoms Following Chronic Stress. Cur Neuropharmac. 2024; 22(12): 2059–2078. [https://doi.org/10.2174/1570159X21666230912101441].
  61. Campos AC, Guimarães FS. Involvement of 5HT1A receptors in the anxiolytic-like effects of cannabidiol injected into the dorsolateral periaqueductal gray of rats. Psychopharmacology. 2008; 199(2): 223–230. [https://doi.org/10.1007/s00213-008-1168-x].
  62. Campos AC, Guimarães FS. Evidence for a potential role for TRPV1 receptors in the dorsolateral periaqueductal gray in the attenuation of the anxiolytic effects of cannabinoids. Prog Neuropsychopharmacol Biol Psychiatry. 2009; 33(8): 1517–1521. [https://doi.org/10.1016/j.pnpbp.2009.08.017].
  63. Lemos JI, Resstel LB, Guimarães FS. Involvement of the prelimbic prefrontal cortex on cannabidiol-induced attenuation of contextual conditioned fear in rats. Behav Brain Res. 2010; 207(1): 105–111. [https://doi.org/10.1016/j.bbr.2009.09.045].
  64. Fogaça MV, Reis FM, Campos AC, Guimarães FS. Effects of intra-prelimbic prefrontal cortex injection of cannabidiol on anxiety-like behavior: involvement of 5HT1A receptors and previous stressful experience. Eur Neuropsychopharmacol. 2014; 24(3): 410–419. [https://doi.org/10.1016/j.euroneuro.2013.10.012].
  65. Marinho AL, Vila-Verde C, Fogaça MV, Guimarães FS. Effects of intra-infralimbic prefrontal cortex injections of cannabidiol in the modulation of emotional behaviors in rats: contribution of 5HT₁A receptors and stressful experiences. Behav Brain Res. 2015; 286: 49–56. [https://doi.org/10.1016/j.bbr.2015.02.023].
  66. Liu J, Scott BW, Burnham WM. Effects of cannabidiol and Δ9-tetrahydrocannabinol in the elevated plus maze in mice. Behav Pharmacol. 2022; 33(2&3): 206–212. [https://doi.org/10.1097/FBP.0000000000000636].
  67. Gasparyan A, Navarrete F, Navarro D, Manzanares J. Cannabidiol regulates behavioral and brain alterations induced by spontaneous alcohol withdrawal. Neuropharmacology. 2023; 233: 109549. [https://doi.org/10.1016/j.neuropharm.2023.109549].
  68. Long LE, Chesworth R, Huang XF, McGregor IS, Arnold JC, Karl T. A behavioural comparison of acute and chronic Delta9-tetrahydrocannabinol and cannabidiol in C57BL/6JArc mice. Int J Neuropsychopharmacol. 2010; 13(7): 861–876. [https://doi.org/10.1017/S1461145709990605].
  69. Long LE, et al. Distinct neurobehavioural effects of cannabidiol in transmembrane domain neuregulin 1 mutant mice. PloS One. 2012; 7(4): e34129. [https://doi.org/10.1371/journal.pone.0034129].
  70. Souza AJ, Guimarães FS, Gomes FV. Cannabidiol attenuates the expression of conditioned place aversion induced by naloxone-precipitated morphine withdrawal through the activation of 5-HT1A receptors. Behav Brain Res. 2023; 450: 114504. [https://doi.org/10.1016/j.bbr.2023.114504].
  71. Resstel LB, Tavares RF, Lisboa, SF, Joca SR, Corrêa FM, Guimarães FS. 5-HT1A receptors are involved in the cannabidiol-induced attenuation of behavioural and cardiovascular responses to acute restraint stress in rats. Brit J Pharmacol. 2009; 156(1): 181–188. [https://doi.org/10.1111/j.1476-5381.2008.00046.x].
  72. Gomes FV, Resstel LB, Guimarães FS. The anxiolytic-like effects of cannabidiol injected into the bed nucleus of the stria terminalis are mediated by 5-HT1A receptors. Psychopharmacol. 2011; 213(2-3): 465–473. [https://doi.org/10.1007/s00213-010-2036-z].
  73. Campos AC, Ferreira FR, Guimarães FS. Cannabidiol blocks long-lasting behavioral consequences of predator threat stress: possible involvement of 5HT1A receptors. J Psychiatr Res. 2012 Nov; 46(11): 1501-10. [https://doi.org/10.1016/j.jpsychires.2012.08.012].
  74. Gomes FV, Reis DG, Alves FH, Corrêa FM, Guimarães FS, Resstel LB. Cannabidiol injected into the bed nucleus of the stria terminalis reduces the expression of contextual fear conditioning via 5-HT1A receptors. J Psychopharmacol. 2012; 26(1): 104–113. [https://doi.org/10.1177/0269881110389095].
  75. Campos AC, et al. Involvement of serotonin-mediated neurotransmission in the dorsal periaqueductal gray matter on cannabidiol chronic effects in panic-like responses in rats. Psychopharmacol. 2013; 226(1): 13–24. [https://doi.org/10.1007/s00213-012-2878-7].
  76. Chaves YC, Genaro K, Crippa JA, da Cunha JM, Zanoveli JM. Cannabidiol induces antidepressant and anxiolytic-like effects in experimental type-1 diabetic animals by multiple sites of action. Metab Brain Dis. 2021; 36(4): 639–652. [https://doi.org/10.1007/s11011-020-00667-3].
  77. Szkudlarek HJ, et al. THC and CBD produce divergent effects on perception and panic behaviours via distinct cortical molecular pathways. Prog Neuropsychopharmacol Biol Psychiatry. 2021; 104: 110029. [https://doi.org/10.1016/j.pnpbp.2020.110029].
  78. Shu G et al. Cannabidiol exhibits anxiolytic-like effects and antipsychotic-like effects in mice models. Neurosci Lett. 2024; 826: 137723. [https://doi.org/10.1016/j.neulet.2024.137723].
  79. Khan AU, et al. Cannabidiol-induced panicolytic-like effects and fear-induced antinociception impairment: the role of the CB1 receptor in the ventromedial hypothalamus. Psychopharmacology. 2020; 237(4): 1063–1079. [https://doi.org/10.1007/s00213-019-05435-5].
  80. Austrich-Olivares A, García-Gutiérrez MS, Illescas L, Gasparyan A, Manzanares J. Cannabinoid CB1 Receptor Involvement in the Actions of CBD on Anxiety and Coping Behaviors in Mice. Pharmaceuticals. 2022; 15(4): 473. [https://doi.org/10.3390/ph15040473].
  81. de Paula Rodrigues BM, Coimbra NC. CB1 receptor signalling mediates cannabidiol-induced panicolytic-like effects and defensive antinociception impairment in mice threatened by Bothrops jararaca lancehead pit vipers. J Psychopharmacol. 2022; 36(12): 1384–1396. [https://doi.org/10.1177/02698811221115755].
  82. Fogaça MV, Campos AC, Coelho LD, Duman RS, Guimarães FS. The anxiolytic effects of cannabidiol in chronically stressed mice are mediated by the endocannabinoid system: Role of neurogenesis and dendritic remodeling. Neuropharmacol. 2018; 135: 22–33. [https://doi.org/10.1016/j.neuropharm.2018.03.001].
  83. Moreira FA, Aguiar DC, Guimarães FS. Anxiolytic-like effect of cannabidiol in the rat Vogel conflict test. Prog Neuropsychopharmacol Biol Psychiatry. 2006; 30(8): 1466–1471. [https://doi.org/10.1016/j.pnpbp.2006.06.004].
  84. Piao JJ, et al. Cannabidiol Alleviates Chronic Prostatitis and Chronic Pelvic Pain Syndrome via CB2 Receptor Activation and TRPV1 Desensitization. World J Mens Health. 2024; [https://doi.org/10.5534/wjmh.230352].
  85. ElBatsh MM, Assareh N, Marsden CA, Kendall DA. Anxiogenic-like effects of chronic cannabidiol administration in rats. Psychopharmacol. 2012; 221(2): 239–247. [https://doi.org/10.1007/s00213-011-2566-z].
  86. Silva-Cardoso GK, et al. Cannabidiol effectively reverses mechanical and thermal allodynia, hyperalgesia, and anxious behaviors in a neuropathic pain model: Possible role of CB1 and TRPV1 receptors. Neuropharmacol. 2021; 197: 108712. [https://doi.org/10.1016/j.neuropharm.2021.108712].
  87. Campos AC, et al. The anxiolytic effect of cannabidiol on chronically stressed mice depends on hippocampal neurogenesis: involvement of the endocannabinoid system. Int J Neuropsychopharmacol. 2013; 16(6): 1407–1419. [https://doi.org/10.1017/S1461145712001502].
  88. Salviato BZ, et al. Female but not male rats show biphasic effects of low doses of Δ9-tetrahydrocannabinol on anxiety: can cannabidiol interfere with these effects? Neuropharmacol. 2021; 196: 108684. [https://doi.org/10.1016/j.neuropharm.2021.108684].
  89. Saad N, Raviv D, Mizrachi Zer-Aviv T, Akirav I. Cannabidiol Modulates Emotional Function and Brain-Derived Neurotrophic Factor Expression in Middle-Aged Female Rats Exposed to Social Isolation. Int J Mol Sci. 2023; 24(20): 15492. [https://doi.org/10.3390/ijms242015492].
  90. Melkumyan M, et al. Effects of cannabidiol, with and without ∆9-tetrahydrocannabinol, on anxiety-like behavior following alcohol withdrawal in mice. Front Neurosci. 2024; 18: 1375440. [https://doi.org/10.3389/fnins.2024.1375440].
  91. Xie G, Qin Y, Wu N, Han X, Li J. Single-Nucleus Transcriptome Profiling from the Hippocampus of a PTSD Mouse Model and CBD-Treated Cohorts. Genes. 2024; 15(4): 519. [https://doi.org/10.3390/genes15040519].
  92. Hsiao YT, Yi PL, Li CL, Chang FC. Effect of cannabidiol on sleep disruption induced by the repeated combination tests consisting of open field and elevated plus-maze in rats. Neuropharmacology. 2012; 62(1): 373–384. [https://doi.org/10.1016/j.neuropharm.2011.08.013].
  93. Shin LM, Liberzon I. The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacology. 2010; 35(1): 169–191. [https://doi.org/10.1038/npp.2009.83].
  94. Parks CL, Robinson PS, Sibille E, Shenk T, Toth M. Increased anxiety of mice lacking the serotonin1A receptor. Proc Natl Acad Sci U S A. 1998; 95(18): 10734–10739. [https://doi.org/10.1073/pnas.95.18.10734].
  95. Ramboz S, et al. Serotonin receptor 1A knockout: an animal model of anxiety-related disorder. Proc Natl Acad Sci U S A. 1998; 95(24): 14476–14481. [https://doi.org/10.1073/pnas.95.24.14476].
  96. Martin M, Ledent C, Parmentier M, Maldonado R, Valverde O. Involvement of CB1 cannabinoid receptors in emotional behaviour. Psychopharmacol. 2002; 159(4): 379–387. [https://doi.org/10.1007/s00213-001-0946-5].
  97. Degroot A, Nomikos GG. Genetic deletion and pharmacological blockade of CB1 receptors modulates anxiety in the shock-probe burying test. Eur J Neurosci. 2004; 20(4): 1059–1064. [https://doi.org/10.1111/j.1460-9568.2004.03556.x].
  98. Witkin JM, Tzavara ET, Nomikos GG. A role for cannabinoid CB1 receptors in mood and anxiety disorders. Behav Pharmacol. 2005; 16(5-6): 315–331. [https://doi.org/10.1097/00008877-200509000-00005].
  99. Bertoglio LJ, Joca SR, Guimarães FS. Further evidence that anxiety and memory are regionally dissociated within the hippocampus. Behav Brain Res. 2006; 175(1): 183–188. [https://doi.org/10.1016/j.bbr.2006.08.021].
  100. Canteras NS, Resstel LB, Bertoglio LJ, Carobrez AP, Guimarães FS. Neuroanatomy of anxiety. Curr Top Behav Neurosci. 2010; 2: 77-96. [https://doi.org/10.1007/7854_2009_7].
  101. Steimer T. Animal models of anxiety disorders in rats and mice: some conceptual issues. Dialogues Clin Neurosci. 2011; 13(4): 495-506. [https://doi.org/10.31887/DCNS.2011.13.4/tsteimer].
  102. Giustino TF, Maren S. The role of the medial prefrontal cortex in the conditioning and extinction of fear. Front Behav Neurosci. 2015; 9: 298. [https://doi.org/10.3389/fnbeh.2015.00298].
  103. Diehl MM, Moscarello JM, Trask S. Behavioral outputs and overlapping circuits between conditional fear and active avoidance. Neurobiol Learn Mem. 2024; 213: 107943. [https://doi.org/10.1016/j.nlm.2024.107943].
  104. Hernandes PM, et al. Sex and estrous cycle-linked differences in the effect of cannabidiol on panic-like responding in rats and mice. Behav Brain Res. 2023; 455: 114663. [https://doi.org/10.1016/j.bbr.2023.114663].
  105. Fabris D, et al. Sex-dependent differences in the anxiolytic-like effect of cannabidiol in the elevated plus-maze. J Psychopharmacol. 2022; 36(12): 1371–1383. [https://doi.org/10.1177/02698811221125440].
  106. Chesworth R, Cheng D, Staub C, Karl T. Effect of long-term cannabidiol on learning and anxiety in a female Alzheimer's disease mouse model. Front Pharmacol. 2022; 13: 931384. [https://doi.org/10.3389/fphar.2022.931384].
  107. Yadav-Samudrala BJ, et al. Effects of acute cannabidiol on behavior and the endocannabinoid system in HIV-1 Tat transgenic female and male mice. Frontiers in neuroscience. 2024; 18: 1358555. [https://doi.org/10.3389/fnins.2024.1358555].
  108. Huffstetler CM, et al. A. Single cannabidiol administration affects anxiety-, obsessive compulsive-, object memory-, and attention-like behaviors in mice in a sex and concentration dependent manner. Pharmacol Biochem Behav. 2023; 222: 173498. [https://doi.org/10.1016/j.pbb.2022.173498].
  109. Guimarães FS, Chiaretti TM, Graeff FG, Zuardi AW. Antianxiety effect of cannabidiol in the elevated plus-maze. Psychopharmacol. 1990; 100(4): 558–559. [https://doi.org/10.1007/BF02244012].
  110. Resstel LB, Joca SR, Moreira FA, Corrêa FM, Guimarães FS. Effects of cannabidiol and diazepam on behavioral and cardiovascular responses induced by contextual conditioned fear in rats. Behav Brain Res. 2006; 172(2): 294–298. [https://doi.org/10.1016/j.bbr.2006.05.016].
  111. Uribe-Mariño A, et al. Anti-aversive effects of cannabidiol on innate fear-induced behaviors evoked by an ethological model of panic attacks based on a prey vs the wild snake Epicrates cenchria crassus confrontation paradigm. Neuropsychopharmacology. 2012; 37(2): 412–421. [https://doi.org/10.1038/npp.2011.188].
  112. O'Brien LD, et al. Effect of chronic exposure to rimonabant and phytocannabinoids on anxiety-like behavior and saccharin palatability. Pharmac, Biochem Behav. 2013; 103(3): 597–602. [https://doi.org/10.1016/j.pbb.2012.10.008].
  113. Almeida V, et al. Cannabidiol exhibits anxiolytic but not antipsychotic property evaluated in the social interaction test. Prog Neuropsychopharmacol Biol Psychiatry. 2013; 41: 30–35. [https://doi.org/10.1016/j.pnpbp.2012.10.024].
  114. Cheng D, Low JK, Logge W, Garner B, Karl T. Chronic cannabidiol treatment improves social and object recognition in double transgenic APPswe/PS1∆E9 mice. Psychopharmacology. 2014; 231(15): 3009–3017. https://doi.org/10.1007/s00213-014-3478-5].
  115. Nardo M, Casarotto PC, Gomes FV, Guimarães FS. Cannabidiol reverses the mCPP-induced increase in marble-burying behavior. Fundam Clin Pharmacol. 2014 Oct; 28(5): 544-50. [https://doi.org/10.1111/fcp.12051].
  116. Schiavon AP, Bonato JM, Milani H, Guimarães FS, Oliveira RMW. Influence of single and repeated cannabidiol administration on emotional behavior and markers of cell proliferation and neurogenesis in non-stressed mice. Prog Neuropsychopharmacol Biol Psychiatry. 2016; 64: 27–34. [https://doi.org/10.1016/j.pnpbp.2015.06.017].
  117. Zieba J, et al. Cannabidiol (CBD) reduces anxiety-related behavior in mice via an FMRP-independent mechanism. Pharmacol Biochem Behav. 2019; 181: 93–10. [https://doi.org/10.1016/j.pbb.2019.05.002].
  118. Chaves YC, et al. Two-weeks treatment with cannabidiol improves biophysical and behavioral deficits associated with experimental type-1 diabetes. Neurosci Lett. 2020; 729: 135020. [https://doi.org/10.1016/j.neulet.2020.135020].
  119. Assareh N, Gururajan A, Zhou C, Luo JL, Kevin RC & Arnold JC. Cannabidiol disrupts conditioned fear expression and cannabidiolic acid reduces trauma-induced anxiety-related behaviour in mice. Behav Pharmacol. 2020; 31(6): 591–596. [https://doi.org/10.1097/FBP.0000000000000565].
  120. Gasparyan A, Navarrete F, Manzanares J. Cannabidiol and Sertraline Regulate Behavioral and Brain Gene Expression Alterations in an Animal Model of PTSD. Front Pharmacol. 2021; 12: 694510. [https://doi.org/10.3389/fphar.2021.694510].
  121. Navarrete F, Aracil-Fernández A, Manzanares J. Cannabidiol regulates behavioural alterations and gene expression changes induced by spontaneous cannabinoid withdrawal. Brit J Pharmacol. 2018; 175(13): 2676–2688. [https://doi.org/10.1111/bph.14226].
  122. Alegre-Zurano L, López-Arnau R, Luján MÁ, Camarasa J, Valverde O. Cannabidiol Modulates the Motivational and Anxiety-Like Effects of 3,4-Methylenedioxypyrovalerone (MDPV) in Mice. Int J Mol Sci. 2021; 22(15): 8304. [https://doi.org/10.3390/ijms22158304].
  123. Marçal AP, Soares N, Asth L, Moreira FA, Ferreira AVM, Aguiar DC. Cannabidiol ameliorates the anxiogenic and compulsive-like behaviors induced by chronic consumption of a high-carbohydrate diet in male mice. Metab Brain Dis. 2022; 37(8): 2711–2718. [https://doi.org/10.1007/s11011-022-01071-9].
  124. Jinks AL, McGregor IS. Modulation of anxiety-related behaviours following lesions of the prelimbic or infralimbic cortex in the rat. Brain Res. 1997 Oct 24; 772(1-2): 181-90. [https://doi.org/10.1016/s0006-8993(97)00810-x].
  125. Sotres-Bayon F, Quirk GJ. Prefrontal control of fear: more than just extinction. Curr Opin Neurobiol. 2010 Apr; 20(2): 231-5. [https://doi.org/10.1016/j.conb.2010.02.005].
  126. Albert PR, Vahid-Ansari F, Luckhart C. Serotonin-prefrontal cortical circuitry in anxiety and depression phenotypes: pivotal role of pre- and post-synaptic 5-HT1A receptor expression. Front Behav Neurosci. 2014 Jun 6; 8: 199. [https://doi.org/10.3389/fnbeh.2014.00199].
  127. Santana N, Bortolozzi A, Serrats J, Mengod G, Artigas F. Expression of serotonin1A and serotonin2A receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb Cortex. 2004 Oct; 14(10): 1100-9. [https://doi.org/10.1093/cercor/bhh070].
  128. Yuen EY, Jiang Q, Chen P, Feng J, Yan Z. Activation of 5-HT2A/C receptors counteracts 5-HT1A regulation of n-methyl-D-aspartate receptor channels in pyramidal neurons of prefrontal cortex. J Biol Chem. 2008 Jun 20; 283(25): 17194-204. [https://doi.org/10.1074/jbc.M801713200].
  129. Lladó-Pelfort L, Santana N, Ghisi V, Artigas F, Celada P. 5-HT1A receptor agonists enhance pyramidal cell firing in prefrontal cortex through a preferential action on GABA interneurons. Cereb Cortex. 2012 Jul; 22(7): 1487-97. [https://doi.org/10.1093/cercor/bhr220].
  130. Celada P, Puig MV, Artigas F. Serotonin modulation of cortical neurons and networks. Front Integr Neurosci. 2013 Apr 19; 7: 25. [https://doi.org/10.3389/fnint.2013.00025].
  131. Lopez J, Gamache K, Schneider R, Nader K. Memory retrieval requires ongoing protein synthesis and NMDA receptor activity-mediated AMPA receptor trafficking. J Neurosci. 2015 Feb 11; 35(6): 2465-75. [https://doi.org/10.1523/JNEUROSCI.0735-14.2015].
  132. Wissink S, Meijer O, Pearce D, van Der Burg B, van Der Saag PT. Regulation of the rat serotonin-1A receptor gene by corticosteroids. J Biol Chem. 2000 Jan 14; 275(2): 1321-6. [https://doi.org/10.1074/jbc.275.2.1321].
  133. Zhuang X, Gross C, Santarelli L, Compan V, Trillat AC, Hen R. Altered emotional states in knockout mice lacking 5-HT1A or 5-HT1B receptors. Neuropsychopharmacology. 1999 Aug; 21(2 Suppl): 52S-60S. [https://doi.org/10.1016/S0893-133X(99)00047-0].
  134. Rioja J et al. 5-HT1A receptor activation before acute stress counteracted the induced long-term behavioral effects. Ann N Y Acad Sci. 2004 Jun; 1018: 333-8. [https://doi.org/10.1196/annals.1296.041].
  135. Puglisi-Allegra S, Andolina D. Serotonin and stress coping. Behav Brain Res. 2015 Jan 15; 277: 58-67. [https://doi.org/10.1016/j.bbr.2014.07.052].
  136. Bickle JG, et al. 5-HT1A Receptors on Dentate Gyrus Granule Cells Confer Stress Resilience. Biol Psychiatry. 2024 Apr 15; 95(8): 800-809. [https://doi.org/10.1016/j.biopsych.2023].
  137. Morena M, Leitl KD, Vecchiarelli HA, Gray JM, Campolongo P, Hill MN. Emotional arousal state influences the ability of amygdalar endocannabinoid signaling to modulate anxiety. Neuropharmacology. 2016 Dec; 111: 59-69. [https://doi.org/10.1016/j.neuropharm.2016.08.020].
  138. Linge R et al. Cannabidiol induces rapid-acting antidepressant-like effects and enhances cortical 5-HT/glutamate neurotransmission: role of 5-HT1A receptors. Neuropharmacol. 2016; 103: 16–26. [https://doi.org/10.1016/j.neuropharm.2015.12.017].
  139. Abame MA et al. Chronic administration of synthetic cannabidiol induces antidepressant effects involving modulation of serotonin and noradrenaline levels in the hippocampus. Neurosci Lett. 2021 Jan 23; 744: 135594. [https://doi.org/10.1016/j.neulet.2020.135594].
  140. Guldager MB, Biojone C, da Silva NR, Godoy LD, Joca S. New insights into the involvement of serotonin and BDNF-TrkB signalling in cannabidiol's antidepressant effect. Prog Neuropsychopharmacol Biol Psychiatry. 2024 Jul 13; 133: 111029. [https://doi.org/10.1016/j.pnpbp.2024.111029].
  141. Mitchell JR, et al. Darting across space and time: parametric modulators of sex-biased conditioned fear responses. Learn Mem. 2022 Jun 16; 29(7): 171-180. [https://doi.org/10.1101/lm.053587.122].
  142. Mitchell JR, et al. Behavioral and neural correlates of diverse conditioned fear responses in male and female rats. bioRxiv [Preprint]. 2024 Aug 21; 2024. 08.20.608817. [https://doi.org/10.1101/2024.08.20.608817].
  143. Werle I, Bertoglio LJ. Psychedelics: A review of their effects on recalled aversive memories and fear/anxiety expression in rodents. Neurosci Biobehav Rev. 2024 Dez; 167: 105899. [https://doi.org/10.1016/j.neubiorev.2024.105899].
  144. Han K, Wang JY, Wang PY, Peng YC. Therapeutic potential of cannabidiol (CBD) in anxiety disorders: A systematic review and meta-analysis. Psychiatry Res. 2024 Sep; 339: 116049. [https://doi.org/10.1016/j.psychres.2024.116049].
  145. Crippa JA, et al. Effects of cannabidiol (CBD) on regional cerebral blood flow. Neuropsychopharmacol. 2004 Feb; 29(2): 417-26. [https://doi.org/10.1038/sj.npp.1300340].
  146. Das RK, et al. Cannabidiol enhances consolidation of explicit fear extinction in humans. Psychopharmacology. 2013 Apr; 226(4): 781-92. [https://doi.org/10.1007/s00213-012-2955-y].
  147. Bolsoni LM, Crippa JAS, Hallak JEC, Guimarães FS, Zuardi AW. The anxiolytic effect of cannabidiol depends on the nature of the trauma when patients with post-traumatic stress disorder recall their trigger event. Braz J Psychiatry. 2022 May-Jun; 44(3): 298-307. [https://doi.org/10.1590/1516-4446-2021-2317].
  148. Raut SB, et al. Diverse therapeutic developments for post-traumatic stress disorder (PTSD) indicate common mechanisms of memory modulation. Pharmacol Ther. 2022 Nov; 239: 108195. [https://doi.org/10.1016/j.pharmthera.2022.108195].
  149. Kindt M, Elsey JWB. A paradigm shift in the treatment of emotional memory disorders: Lessons from basic science. Brain Res Bull. 2023 Jan; 192: 168-174. [https://doi.org/10.1016/j.brainresbull.2022.11.019].
  150. Kida S. Reconsolidation/destabilization, extinction and forgetting of fear memory as therapeutic targets for PTSD. Psychopharmacol. 2019 Jan; 236(1): 49-57. [https://doi.org/10.1007/s00213-018-5086-2].
  151. Lookfong NA, Raup-Konsavage WM, Silberman Y. Potential Utility of Cannabidiol in Stress-Related Disorders. Cannabis Cannabinoid Res. 2023 Apr; 8(2): 230-240. [https://doi.org/10.1089/can.2022.0130].
  152. Luján MÁ, Valverde O. The Pro-neurogenic Effects of Cannabidiol and Its Potential Therapeutic Implications in Psychiatric Disorders. Front Behav Neurosci. 2020 Jun 26; 14: 109. [https://doi.org/10.3389/fnbeh.2020.00109].
  153. Domingos LB, Silva NR, Chaves Filho AJM, Sales AJ, Starnawska A, Joca S. Regulation of DNA Methylation by Cannabidiol and Its Implications for Psychiatry: New Insights from In Vivo and In Silico Models. Genes. 2022 Nov 20; 13(11): 2165. [https://doi.org/10.3390/genes13112165].
  154. Kim J, Choi H, Kang EK, Ji GY, Kim Y, Choi IS. In Vitro Studies on Therapeutic Effects of Cannabidiol in Neural Cells: Neurons, Glia, and Neural Stem Cells. Molecules. 2021 Oct 8; 26(19): 6077. [https://doi.org/10.3390/molecules26196077].
  155. Hartmann A, Vila-Verde C, Guimarães FS, Joca SR, Lisboa SF. The NLRP3 Inflammasome in Stress Response: Another Target for the Promiscuous Cannabidiol. Curr Neuropharmacol. 2023; 21: 284-308. [https://doi.org/10.2174/1570159X20666220411101217].
  156. Ling T, et al. Purinergic Astrocyte Signaling Driven by TNF-α After Cannabidiol Administration Restores Normal Synaptic Remodeling Following Traumatic Brain Injury. Neuroscience. 2024 May 3; 545: 31-46. [https://doi.org/10.1016/j.neuroscience.2024.03.002].
  157. Gomes FV, Llorente R, Del Bel EA, Viveros MP, López-Gallardo M, Guimarães FS. Decreased glial reactivity could be involved in the antipsychotic-like effect of cannabidiol. Schizophr Res. 2015 May;164(1-3):155-63. [https://doi.org/10.1016/j.schres.2015.01.015].
  158. Ye H, Wan Y, Wang X, Wang S, Zhao X, Wang X, et al. Cannabidiol Protects Against Neurotoxic Reactive Astrocytes-Induced Neuronal Death in Mouse Model of Epilepsy. J Neurochem. 2025 Mar; 169(3): e70038. [https://doi.org/10.1111/jnc.70038].
  159. Kamsrijai U, Charoensup R, Jaidee W, Hawiset T, Thaweethee-Sukjai B, Praman S. Cannabidiol/cannabidiolic acid-rich hemp (Cannabis sativa L.) extract attenuates cognitive impairments and glial activations in rats exposed to chronic stress. J Ethnopharmacol. 2025 Feb 10; 338(Pt 3): 119113. [https://doi.org/10.1016/j.jep.2024.119113].
  160. Xie G, Gao X, Guo Q, Liang H, Yao L, Li W, et al. Cannabidiol ameliorates PTSD-like symptoms by inhibiting neuroinflammation through its action on CB2 receptors in the brain of male mice. Brain Behav Immun. 2024 Jul; 119: 945-964. [https://doi.org/10.1016/j.bbi.2024.05.016].

Autor(es)

Métricas

  • Artigo visto 434 vez(es)

Como Citar

1.
Canabidiol, ansiedade e memórias aversivas: uma revisão das evidências pré-clínicas. Rev Fitos [Internet]. 2º de junho de 2025 [citado 9º de novembro de 2025];19:e1817. Disponível em: https://revistafitos.far.fiocruz.br/index.php/revista-fitos/article/view/1817
Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Copyright (c) 2025 Revista Fitos

Informe um erro