Contributions of bioinformatics to study natural antifungals: review in a pharmacological context

Valeria Miozza
Sebastian Barceló
Pablo Passero
Ezequiel Farah
Cristina Perez

    Valeria Miozza

    Universidad de Buenos Aires, Facultad de Odontología, Farmacología, Buenos Aires, Argentina.

    PhD in medicine

    Sebastian Barceló

    Universidad de Buenos Aires, Facultad de Odontología, Farmacología, Buenos Aires, Argentina.

    Md in Biology

    Pablo Passero

    1Universidad de Buenos Aires, Facultad de Odontología, Farmacología, Buenos Aires, Argentina.

    MD IN ODONTOLOGY

    Ezequiel Farah

    Universidad de Buenos Aires, Facultad de Odontología, Farmacología, Buenos Aires, Argentina.

    MD IN MEDICINE

    Cristina Perez

    Universidad de Buenos Aires

    Cátedra de Farmacología, Facultad de Odontología, Universidad de Buenos Aires, M. T. de Alvear 2142, 1122 AAH, CABA, Argentina; Phone: (+5411) 5287 6235  Fax: (+5411) 4508 3958;


Palavras-chave

Bioinformatics
Computational studies
Theoretical studies
Antifungal agents
Natural products

Resumo

In the last decades, computational techniques have become valuable tools for research of biological systems. They are applied to biochemistry, immunology, pharmacology, etc. Regarding antimicrobial agents, the search for new medicaments or pharmacological strategies is fully justified because of different reasons such as emergence of resistance and drug interactions, particularly in immunocompromised patients. In this work we proposed to update knowledge about application of computational methods to research on natural antifungal compounds. We searched scientific findings through electronic databases according to pertinence and relevance of the information. Then, we analyzed and selected articles in order to organize the information in different items according to set schedules. We updated information about in silico studies regarding new and already known natural antifungal agents. Data were then placed in a pharmacological context regarding molecular targets, mechanisms of therapeutic and toxic effects, as well as resistance mechanisms and their reversion, with special focus on human mycoses. Thus, in this review we summarized important contributions of bioinformatics studies to the design and discovery of new potential agents. We also integrated data related to pharmacology and other disciplines in order to provide a framework for the bioinformatics findings.

Referências

  1. International Human Genome Sequencing Consortium. The Human Genome Project. Information Archive glossary. 2001. [Link].
  2. Luscombe NM, Greenbaum D, Gerstein M. What is bioinformatics? A proposed definition and overview of the field. Methods Inf Med. 2001; 40(4): 346-358. ISSN 0026-1270. [PubMed].
  3. Peláez F. Paradigmas actuales en las etapas tempranas del proceso de descubrimiento y desarrollo de nuevos fármacos. An Real Soc Española Quim. 2011; 107(1): 36-45. ISSN 1575-3417. [Link].
  4. Tamay-Cach F, Villa-Tanaca ML, Trujillo-Ferrara JG, Alemán-González-Duhart D, Quintana-Pérez JC, González-Ramírez IA et al. In Silico Studies Most Employed in the Discovery of New Antimicrobial Agents. Curr Med Chem. 2016; 23(29): 3360-3373. ISSN 1875-533X. [CrossRef].
  5. Pérez C, Tiraboschi IN, Ortega MG, Agnese AM, Cabrera JL. Further antimicrobial studies on 2´ 4´- dihydroxy- 5´-(1´´´ -dimethylallyl)- 6-prenylpinocembrin from Dalea elegans. Pharm Biol. 2003; 41(3): 171-174, ISSN 1744-5116. [CrossRef].
  6. Peralta MA, Calise M, Fornari MC, Ortega MG, Diez RA, Cabrera JL et al. A prenylated flavanone from Dalea elegans inhibits rhodamine 6G efflux and reverses fluconazole resistance in Candida albicans. Pl Med. 2012; 78(10): 981-987. ISSN 0032-0943.
  7. Barceló S, Peralta MA, Ortega MG, Cabrera JL, Pérez C. Interacciones moleculares de un flavonoide prenilado con transportadores de antimicóticos dependientes de ATP. Rev Fac Odon UBA. 2014; 29(66): 26-36. ISSN 1668-8538.
  8. Barceló S, Farah E, Pérez C. Interacciones de un compuesto de origen vegetal con distintos blancos terapéuticos. In IX international symposium on natural products chemistry and applications. Termas de Chillán, Chile. November 22-25. 2016; 134.
  9. Barceló S, Miozza V, Passero P, Farah E, Pérez, C. Aplicaciones de la informática en el estudio de productos naturales. Rev Fac Odontol UBA. 2017; 32(72): 22-31. ISSN 1668-8538. [Link].
  10. Saldanha LG, Dwyer JT, Betz JM. Culinary spice plants in dietary supplement products and tested in clinical trials. Adv Nutr. 2016; 7(2): 343-348. ISSN 2156-5376. [CrossRef] [PubMed].
  11. Chacón­Lee TL, González­Maríño GE. Microalgae for “healthy” foods—possibilities and challenge. Comp Rev Food Sci Food Saf. 2010; 9(6): 655–675. ISSN 1541-4337. [CrossRef].
  12. Custódio L, Soares F, Pereira H, Barreira L, Vizetto-Duarte C, João Rodrigues M et al. Fatty acid composition and biological activities of Isochrysis galbana T­ISO, Tetraselmis sp. and Scenedesmus sp.: possible application in the pharmaceutical and functional food industries. J Appl Phycol. 2014; 26(1): 151­161. ISSN 1573-5176. [CrossRef].
  13. Cicero AFG, Colletti A. Combinations of phytomedicines with different lipid lowering activity for dyslipidemia management: The available clinical data. Phytomedicine. 2016; 23(11): 1113-1118. ISSN 1618-095X. [CrossRef] [PubMed].
  14. Oliveira JS, Silva AA, Silva VA Jr. Phytotherapy in reducing glycemic index and testicular oxidative stress resulting from induced diabetes: a review. Braz J Biol. 2017; 77(1): 68-78. ISSN 1678-4375. [CrossRef].
  15. Anesini C, Pérez C. Screening of plants used in Argentine folk medicine for antimicrobial activity. J Ethnopharmacol. 1993; 39(2): 119-128. ISSN 0378-8741. [CrossRef].
  16. Pérez C, Suarez C. Antifungal activity of plant extracts against Candida albicans. Am J Chin Med. 1997; 25(2): 181-184. ISSN 1793-6853. [CrossRef].
  17. Elingold I, Isollabella MP, Casanova M, Celentano AM, Pérez C, Cabrera JL et al. Mitochondrial toxicity and antioxidant activity of a prenylated flavonoid isolated from Dalea elegans. Chem Biol Interact. 2008; 171(3): 294-305. ISSN 1872-7786. [CrossRef] [PubMed].
  18. Pérez C, Agnese AM, Cabrera JL. The essential oil of Senecio graveolens (Compositae): Chemical composition and antimicrobial activity tests. J Ethnopharmacol. 1999; 66(1): 91-96. ISSN 0378-8741. [CrossRef] [PubMed].
  19. Agnese AM, Pérez C, Cabrera JL. Adesmia aegiceras: antimicrobial activity and chemical study. Phytomedicine. 2001; 8(5): 389-394. ISSN 1618-095X. [CrossRef].
  20. Pérez C, Suarez C, Castro G. Production of antimicrobials by Bacillus subtilis MIR 15. J Biotechnol. 1992; 26(2-3): 331-336. ISSN 1873-4863. [CrossRef].
  21. Sharma Y, Rastogi SK, Perwez A, Rizvi MA, Manzoor N. β-citronellol alters cell surface properties of Candida albicans to influence pathogenicity related traits. Med Mycol. ISSN 1365-280X. [CrossRef].
  22. Vázquez-González D, Perusquía-Ortiz AM, Hundeiker M, Bonifaz A. Opportunistic yeast infections: candidiasis, cryptococcosis, trichosporonosis and geotrichosis. J Dtsch Dermatol Ges. 2013; 11(5): 381-394. ISSN 1610-0387. [CrossRef] [PubMed].
  23. Anderson JB. Evolution of antifungal - drug resistance: Mechanisms and pathogen fitness. Nat Rev Microbiol. 2005; 3(7): 547-556. ISSN 1740-1534. [CrossRef].
  24. Lewis RE. Current concepts in antifungal pharmacology. Mayo Clin Proc. 2011; 86(8): 805-817. ISSN 1942-5546. [CrossRef] [PubMed].
  25. Kathiravan MK, Salake AB, Chothe AS, Dudhe PB, Watode RP, Mukta MS et al. The biology and chemistry of antifungal agents: A review. Bioorg Med Chem. 2012; 20(19): 5678-5698. ISSN 0968-0896. [CrossRef] [PubMed].
  26. Arif T, Bhosale JD, Kumar N, Mandal TK, Bendre RS, Lavekar GS et al. Natural products-antifungal agents derived from plants. J Asian Nat Prod Res. 2009; 11(7): 621-.638. ISSN‎ ‎1028-6020. [CrossRef] [PubMed].
  27. Arif T, Mandal TK, Dabur R. “Natural products: Anti-fungal agents from plantsâ€. In: Opportunity, Challenge and Scope of Natural Products in Medicinal Chemistry; V.K. Tiwari, B.B. Mishra (editors), Research Signpost: Kerala, India, 2011; pp. 283-311. ISBN 9788130804484.
  28. Mansfield BE, Oltean HN, Oliver BG, Hoot SJ, Leyde SE, Hedstrom L et al. Azole drugs are imported by facilitated diffusion in Candida albicans and other pathogenic fungi. PLoS Pathog. 2010; 6(9). [CrossRef].
  29. Bard M, Lees ND, Turi T, Craft D, Cofrin L, Barbuch R et al. Sterol synthesis and viability of erg11 (cytochrome P450 lanosterol demethylase) mutations in Saccharomyces cerevisiae and Candida albicans. Lipids. 1993; 28(11): 963-967. ISSN 1558-9307. [CrossRef] [PubMed].
  30. Lamb DC, Kelly DE, Schunk WH, Shyadehi AZ, Akhtar M, Lowe DJ et al. The mutation T315A in Candida albicans sterol 14alpha-demethylase causes reduced enzyme activity and fluconazole resistance through reduced affinity. J Biol Chem. 1997; 272(9): 5682-5688. ISSN 1083-351X. [CrossRef] [PubMed].
  31. Irfan M, Abid M. Three dimensional structure modeling of lanosterol 14-α demethylase of Candida albicans and docking studies with new triazole derivatives. Chem inform. 2015; 1(1,4):1-8. ISSN 2470-6973. [Link].
  32. Bhatnagar RS, Fütterer K, Farazi TA, Korolev S, Murray CL, Jackson-Machelski E et al. Structure of N-myristoyl-transferase with bound myristoylCoA and peptide substrate analogs. Nat Struct Biol. 1998; 5(12): 1091-1097. ISSN‎ ‎1072-8368. [CrossRef] [PubMed].
  33. Gelb MH, Van Voorhis WC, Buckner FS, Yokoyama K, Eastman R, Carpenter EP etal. Protein farnesyl and N-myristoyl transferases: Piggy-back medicinal chemistry targets for the development of antitrypanosomatid and antimalarial therapeutics. Mol Biochem Parasitol. 2003; 126(2):155-63. ISSN 0166-6851. [CrossRef] [PubMed].
  34. Wright MH, Heal WP, Mann DJ. Tate EW. Protein myristoylation in health and disease. J Chem Biol. 2010; 3(1): 19-35. ISSN 1864-6158. [CrossRef] [PubMed].
  35. Guerrero-Perilla C, Bernal FA, Coy-Barrera ED. Molecular docking study of naturally-occurring compounds as inhibitors of N-myristoyl transferase towards antifungal agents discovery. Rev Colomb Cien Quím Farm. 2015; 44(2): 162-178. ISSN 0034-7418. [CrossRef].
  36. Wakelin SA, Ryder MH, Warren RA. Effect of soil properties on growth promotion of wheat by Penicillium radicum. Aust J Soil Res. 2004; 42(8): 897-904. ISSN‎ ‎0004-9573. [CrossRef].
  37. Vining LC. Functions of secondary metbolites. Annu Rev Microbiol. 1990; 44: 395-427. ISSN‎ ‎0066-4227. [CrossRef].
  38. Singh V, Tripathi CKM, Katti SB, Praveen V, Tripathi D, Haque S. Isolation, characterization and antifungal docking studies of wortmannin isolated from Penicillium radicum. Sci Rep. 2015; 5: 11948. [CrossRef].
  39. Arendrup MC, Fuursted K, Gahrn-Hansen B, Jensen IM, Knudsen JD, Lundgren B et al. Seminational surveillance of fungemia in Denmark: notably high rates of fungemia and numbers of isolates with reduced azole susceptibility. J Clin Microbiol. 2005; 43(9): 4434-4440. ISSN 0095-1137. [CrossRef] [PubMed].
  40. Teixeira MM, Theodoro RC, de Carvalho MJ, Fernandes L, Paes HC, Hahn RC et al. Phylogenetic analysis reveals a high level of speciation in the Paracoccidioides genus. Mol Phylogenet Evol. 2009; 52(2): 273-283. ISSN 1095-9513. [CrossRef] [PubMed].
  41. Restrepo A, Benard G, Castro CC, Agudelo CA, Tobón AM. Pulmonary paracoccidioidomycosis. Semin Respir Crit Care Med. 2008; 29(2): 182-197. ISSN 1069-3424. [CrossRef] [PubMed].
  42. Abadio AKR, Kioshima ES, Leroux V, Martins NF, Maigret B, Felipe MSS. Identification of new antifungal compounds targeting thioredoxin reductase of Paracoccidioides Genus. PLoS ONE. 2015; 10(11): e0142926. [CrossRef].
  43. Ghannoumand MA, Rice LB. Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin Microbiol Rev. 1999; 12(4): 501-517. ISSN 1098-6618. [PubMed].
  44. Arendrup MC, Patterson TF. Multidrug-resistant Candida: epidemiology, molecular mechanisms, and treatment. J Infect Dis. 2017; 216(3): S445-S451. ISSN 1537-6613. [CrossRef].
  45. Edlind TD, Henry KW, Metera KA, Katiyar SK. Aspergillus fumigatus CYP51 sequence: potential basis for fluconazole resistance. Med Mycol. 2001; 39(3): 299-302. ISSN 1369-3786. [CrossRef] [PubMed].
  46. Chowdhary A, Prakash A, Sharma C, Kordalewska M, Kumar A, Sarma S et al. A multicentre study of antifungal susceptibility patterns among 350 Candida auris isolates (2009-17) in India: role of the ERG11 and FKS1 genes in azole and echinocandin resistance. J Antimicrob Chemother. 2018; 73(4): 891-899. ISSN 1460-2091. [CrossRef] [PubMed].
  47. Chowdhary A, Sharma C, Meis JF. Candida auris: A rapidly emerging cause of hospital-acquired multidrug-resistant fungal infections globally. PLoS Pathog. 2017; 13(5): 1-10, e1006290. [CrossRef].
  48. Lockhart SR, Etienne KA, Vallabhaneni S, Farooqi J, Chowdhary A, Govender NP et al. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin Infect Dis. 2017; 64(2):134-140. ISSN 1537-6591. [CrossRef] [PubMed].
  49. Clinical Alert to U.S. Healthcare Facilities—June 2016. Global Emergence of Invasive Infections Caused by the Multidrug-Resistant Yeast Candida auris. [Link].
  50. Candida auris in Healthcare Settings-Europe. [Link].
  51. Pan American Health Organization/ World Health Organization (PAHO/ WHO). Candida auris’ Outbreaks in Health Care Services — Epidemiological Alert. [Link].
  52. Leonardelli F, Macedo D, Dudiuk C, Cabeza MS, Gamarra S, Garcia-Effron G. Aspergillus fumigatus intrinsic fluconazole resistance is due to the naturally occurring T301I substitution in Cyp51Ap. Antimicrob Agents Chemother. 2016; 60(9): 5420-5426. ISSN 1098-6596. [CrossRef] [PubMed].
  53. Doligalski CT, Benedict K, Cleveland AA, Park B, Derado G, Pappas PG et al. Epidemiology of invasive mold infections in lung transplant recipients. Am J Transplant. 2014; 14(6): 1328-1333. ISSN 1600-6143. [CrossRef] [PubMed].
  54. Steinbach WJ, Marr KA, Anaissie EJ, Azie N, Quan SP, Meier-Kriesche HU et al. Clinical epidemiology of 960 patients with invasive aspergillosis from the PATH Alliance registry. J Infect. 2012, 65(5): 453-464. ‎ISSN 1532-2742. [CrossRef] [PubMed].
  55. Garcia-Effron G, Dilger A, Alcazar-Fuoli L, Park S, Mellado E, Perlin DS. Rapid detection of triazole antifungal resistance in Aspergillus fumigates. J Clin Microbiol. 2008; 46(4): 1200-1206. ISSN 1098-660X. [CrossRef] [PubMed].
  56. Walsh TJ, Anaissie EJ, Denning DW, Herbrecht R, Kontoyiannis DP, Marr KA et al. Treatment of aspergillosis: clinical practice guidelines of the Infectious Diseases Society of America. Clin Infect Dis. 2008; 46(3): 327-360. ISSN 1537-6591. [CrossRef] [PubMed].
  57. Prasad R, Sharma M, Kaur Rawal M. Functionally Relevant Residues of Cdr1p: A Multidrug ABC Transporter of Human Pathogenic Candida albicans. J Amino Acids, 2011, Article ID 531412. ISSN 2090-0112. [CrossRef].
  58. Sanglard D, Ischer F, Monod M, Bille J. Cloning of Candida albicans genes conferring resistance to azole antifungal agents: characterization of CDR2, a new multidrug ABC transporter gene. Microbiology. 1997; 143(Pt2): 405-416. ISSN 1465-2080. [CrossRef] [PubMed].
  59. Prasad R, Balzi E, Banerjee A, Khandelwal NK. All about CDR transporters: Past, present, and future. Yeast. 2019; 36(4): 223-233. [CrossRef].
  60. Chen Z, Li J, Wang W, Guo X, Li Y, Mao X et al. Mutations adjacent to the end of transmembrane helices 6 and 7 independently affect drug efflux capacity of yeast ABC transporter Pdr5p. Biochim Biophys Acta. 2014; 1838(3): 932-939. ISSN 0005-2736. [CrossRef].
  61. Nim S, Monico A, Rawal MK, Duarte N, Prasad R, Di Pietro A et al. Overcoming multidrug resistance in Candida albicans: Macrocyclic diterpenes from Euphorbia species as potent inhibitors of drug efflux pumps. Pl Med. 2016; 82(13): 1180-1185. ISSN 0032-0943. [CrossRef] [PubMed].
  62. Puri N, Prakash O, Manoharlal R, Sharma M, Ghosh I, Prasad R. Analysis of physico-chemical properties of substrates of ABC and MFS multidrug transporters of pathogenic Candida albicans. Eur J Med Chem. 2010; 45(11): 4813-4826. ISSN 0223-5234. [CrossRef].
  63. Rutledge RM, Esser L, Ma J, Xia D. Toward understanding the mechanism of action of the yeast multidrug resistance transporter Pdr5p: A molecular modeling study. J Struct Biol. 2011: 173(2): 333-344. ISSN 1047-8477. [CrossRef] [PubMed].
  64. Diniz WJS, Canduri F. Review article. Bioinformatics: an overview and its applications. Genet Mol Res. 2017; 16(1): 1-21. ISSN 1676-5680. [Link]. [CrossRef].
  65. Bencurova E, Gupta SK, Sarukhanyan E, Dandekar T. Review. Identification of antifungal targets based on computer modeling J Fungi (Basel). 2018; 4(3): 81. ISSN 2309-608X. [CrossRef].
  66. Chaskar P, Zoete V, Röhrig UF. Toward On-The-Fly Quantum Mechanical/Molecular Mechanical (QM/MM) Docking: Development and Benchmark of a Scoring Function. J Chem Inf Model. 2014; 54(11): 3137−3152. ISSN 1520-5142.
  67. Chen SJ. A potential target of Tanshinone IIA for acute promyelocytic leukemia revealed by inverse docking and drug repurposing. Asian Pac J Cancer Prev. 2014; 15(10): 4301-4305. ISSN 2476-762X. [CrossRef] [PubMed].
  68. Singh VK, Singh AK, Chand R, Kushwaha C. Role of Bioinformatics in agriculture and sustainable development. Int J Bioinformatics Res. 2011; 3(2): 221-226. ISSN 0975-9115. [Link].
  69. Taylor WR, Orengo CA. Protein structure alignment. J Mol Biol. 1989; 208(1): 1-22. ISSN 0022-2836.
  70. Lipman DJ, Altschul SF, Kececioglu JD. A tool for multiple sequence alignment. Proc Natl Acad Sci USA. 1989; 86(12): 4412-4415. ISSN 1091-6490.

Autor(es)

  • Valeria Miozza
    Universidad de Buenos Aires, Facultad de Odontología, Farmacología, Buenos Aires, Argentina.
  • Sebastian Barceló
    Universidad de Buenos Aires, Facultad de Odontología, Farmacología, Buenos Aires, Argentina.
  • Pablo Passero
    1Universidad de Buenos Aires, Facultad de Odontología, Farmacología, Buenos Aires, Argentina.
  • Ezequiel Farah
    Universidad de Buenos Aires, Facultad de Odontología, Farmacología, Buenos Aires, Argentina.
  • Cristina Perez
    Universidad de Buenos Aires

Métricas

  • Artigo visto 438 vez(es)

Como Citar

1.
Contributions of bioinformatics to study natural antifungals: review in a pharmacological context. Rev Fitos [Internet]. 18º de dezembro de 2020 [citado 26º de dezembro de 2024];14(4):547-62. Disponível em: https://revistafitos.far.fiocruz.br/index.php/revista-fitos/article/view/944
Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Copyright (c) 2020 Revista Fitos

Informe um erro