Biomass and volatile oil production of Melissa officinalis L. (lemon balm) under different fertilizations and seasonality

Fábio Vitório Sussa
OrcID
Marcos Roberto Furlan
OrcID
Paulo Sergio Cardoso Silva
OrcID

    Fábio Vitório Sussa

    Institute for Energy and Nuclear Research (IPEN), Research Reactor Center, Av. Lineu Prestes, 2242, Butantã, CEP 05508-000, São Paulo, SP, Brazil.

    OrcID http://orcid.org/0000-0003-1222-8910

    I have a bachelor's degree in Pharmacy and Biochemistry from the Universidade Nove de Julho - UNINOVE (2008). Post-doctorate in Radionuclides for application of nuclear medicine in progress at IPEN (University of São Paulo) (2022-2023). Master in Sciences from the University of São Paulo - IPEN/USP (2011). PhD in Sciences from the University of São Paulo - IPEN/USP (2017). Professor in the pharmacy course in the disciplines of Pharmacognosy, Chemistry of Natural Products, Pharmaceutical Chemistry, Analytical Chemistry, Pharmaceutical Deontology and Legislation, Pharmaceutical Practices and Internship Supervision. It offers face-to-face classes and EaD classes, through the use of virtual learning platforms (forums, activities and video classes), in addition to practical classes in the laboratory. AVA content specialist, orientation and evaluation of TCCs. I work in research with radionuclides Ac-225 and Bi-213 for the production of radiopharmaceuticals for targeted alpha therapies (TAT). I worked in research on the determination of heavy metals and radionuclides in environmental samples (soil and medicinal plants), characterization of secondary metabolites in volatile oils, assays to evaluate the antifungal activity of extracts and essential oils in Aspergillus flavus and optimization of biomass production and active constituents, through edafo-climatic studies. I am experienced in analytical techniques such as GC/MS, Instrumental Neutronic Activation Analysis, Atomic Absorption Spectrometry, Alpha Spectrometry, Gamma Spectrometry, Radiochemistry, Disk Diffusion.

    Marcos Roberto Furlan

    University of Taubaté, Department of Agricultural Sciences. Dean of Research and Graduate Studies. Rua Visconde do Rio Branco, 210, Centro, CEP 12020-040, - Taubaté, SP, Brazil.

    OrcID http://orcid.org/0000-0002-8853-6736

    He holds a degree in Agronomy from the Paulista State University Júlio de Mesquita Filho (1981), a Master's degree in Agronomy (Horticulture) from the Paulista State University Júlio de Mesquita Filho (1987) and a Ph. ). He is currently assistant professor III at the University of Taubaté, prof. of the Agronomy course at Faculdade Integral Cantareira and a member of the master's degree in Environmental Sciences at UNITAU and of the master's and doctorate in Health Sciences. Ad hoc consultant for Scientific Journals, Professor and coordinator of specialization courses in the areas of phytotherapy and medicinal plants. He has experience in the area of Agronomy, with emphasis on Medicinal Plants, working mainly on the following topics: agronomic aspects of medicinal plants, condiments and aromatics, ethnobotany and phytochemistry.

    Paulo Sergio Cardoso Silva

    Institute for Energy and Nuclear Research (IPEN), Research Reactor Center, Av. Lineu Prestes, 2242, Butantã, CEP 05508-000, São Paulo, SP, Brazil.

    OrcID http://orcid.org/0000-0002-9351-9201

    Holds a PhD in Nuclear Technology from the Institute of Nuclear and Energy Research - IPEN/CNEN (2004), Master's Degree in Geophysics from the Astronomical and Geophysical Institute of the University of São Paulo - IAG/USP (1998), Bachelor's Degree in Science (Bachelor's Degree in Chemistry) - Colleges Oswaldo Cruz (1995), Bachelor's Degree in Science (Bachelor's Degree in Chemistry) - Faculdades Oswaldo Cruz (1996), Bachelor's Degree in Short Degree in Sciences from Braz Cubas University (1989). He is currently a researcher at the Institute for Energy and Nuclear Research. He has experience in Analytical Chemistry, with emphasis on Radiochemistry, Neutron Activation Analysis, Alpha Spectrometry, Gamma Spectrometry, working mainly on the following topics: radiochemistry and determination of radionuclides in environmental samples


Keywords

Melissa officinalis
Biomass
Fertilization
Harvest seasonality
Essential oil
GC/MS

Abstract

Fertilization and seasonality study are necessary because they can influence the biomass production and the volatile oils quality of medicinal herbs. The work aimed to identify the agriculture management and seasonality appropriate for the lemon balm harvest with the best volatile oils quality submitted under the experimental design completely randomized (CRD), with organic and conventional fertilization, control cultivation with and without microelements and four harvests (autumn, winter, spring, and summer). Volatile oil was extracted from Melissa officinalis leaves by hidrodistillation method and analyzed by gas chromatography coupled to a mass spectrometer (GC-MS). Biomass production was higher in fertilized treatments and showed higher growth in organic management in the first harvest (autumn and winter). The agriculture management did not influence the oil production yield (0.02%), however it presented smaller amount in the winter (0.003%). Conventional fertilization favors the neral (33.9–37.5%) and geranial (54.1–59.3%) production in the autumn, spring, and summer seasons. In this sense, the data contribute to expand the knowledge of the lemon balm cultivation and to the National Policy on Integrative and Complementary Practices, aimed at the implementation of Phytotherapy in the Health System.

References

  1. Brasil. Ministério da Saúde. Programa Nacional de Plantas Medicinais e Fitoterápicos. Brasília; 2009. ISBN: 978-85-334-1597-3. Disponível em: [https://bvsms.saude.gov.br/bvs/publicacoes/programa_
  2. nacional_plantas_medicinais_fitoterapicos.pdf]. [acesso em: 23 mar. 2022].
  3. Miraj S, Kopaei R, Kiani S. Melissa officinalis L.: a review study with an antioxidant prospective. J Evid Based Compl Altern Med. 2017; 22(3): 385-394 [https://doi.org/10.1177/2156587216663433].
  4. Brasil. Agência Nacional de Vigilância Sanitária - RDC nº 10, de 9 de março de 2010. Dispõe sobre a notificação de drogas vegetais junto à Agência Nacional de Vigilância Sanitária (ANVISA) e dá outras providências. D.O.U - Diário Oficial da União, Brasília, 10 mar. 2010; Seção 1, p.52-59. [https://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2010/res0010_09_03_2010.html].
  5. Sodré ACB, Luz JMQ, Haber LL, Marques MOM, Rodrigues CR, Blank AF. Organic and mineral fertilization and chemical composition of lemon balm (Melissa officinalis) essential oil. Braz J Pharmacogn. 2011; 22(1): 40-44. [https://doi.org/10.1590/S0102-695X2011005000186].
  6. Katar D, Katar N, Aydin D. Determination of yield and essential oil composition of different lemon balm (Melissa officinalis L.) genotypes. Turk J Field Crops. 2021; 26(2): 210-217. [https://doi.org/10.17557/tjfc.1036637].
  7. Petenatti ME, Petenatti EM, del Vitto LA, Téves MR, Caffini NO, Marchevsky EJ, et al. Evaluation of macro and microminerals in crude drugs and infusions of five herbs widely used as sedatives. Braz J Pharmacogn. 2011; 21(6): 1144-1149. [https://doi.org/10.1590/S0102-695X2011005000129].
  8. Pandey AK, Savita. Harvesting and post-harvest processing of medicinal plants: Problems and prospects. Pharma Innovation. 2017; 6(12): 229-235. [https://www.thepharmajournal.com/archives/2017/vol6issue12/
  9. PartD/6-11-73-833.pdf]. [acesso em: 25 mar. 2022].
  10. Silva TC, Bertolucci SKV, Carvalho AA, Tostes WN, Alvarenga ICA, Pacheco FV et al. Macroelment omission in hydroponic systems changes plant growth and chemical composition of Melissa officinalis L. essential oil. Jarmap. 2021; 24(12): 100297. [https://doi.org/10.1016/j.jarmap.2021.100297].
  11. Özyigit Y, Uçar E, Tütüncü B, İndibi I, Turgut K. The Effect of Different Nitrogen Doses on Yield and Some Yield Components of Melissa officinalis subsp. L. altissima (Sibthr. et Smith) Arcang. Turk L Agric Res. 2016; 3(2): 139-144. [https://www.researchgate.net/publication/316258531].
  12. Salamon I, Kryvtsova MV, Trush KI, Fandalyuk AI, Spivak MJ. Agro-ecological cultivation, secondary metabolite characteristics and microbiological tests of lemon balm (Melissa officinalis) - the variety Citronella. Regulat Machan Biosyst. 2019; 10(2): 264-268. [https://doi.org/10.15421/021940].
  13. Blank AF, Fontes SM, Oliveira AS, Mendonça MC, Silva-Mann R, Arrigoni-Blank MF. Produção de mudas, altura e intervalo de corte em melissa. Hortic Bras. 2005; 23(3): 780-784. [https://doi.org/10.1590/S0102-05362005000300018].
  14. García-Risco MR, Mouhid L, Salas-Pérez L, López-Padilla A, Santoyo S, Jaime L et al. Biological Activities of Asteraceae (Achillea millefolium and Calendula officinalis) and Lamiaceae (Melissa officinalis and Origanum majorana) Plant Extracts. Plant Foods Hum Nutr. 2017; 72: 96-102. [https://doi.org/10.1007/s11130-016-0596-8].
  15. Sales JF, Pinto JEBP, Botrel PP, Silva FG, Correa RM, de Carvalho JG. Acúmulo de massa, teor foliar de nutrientes e rendimento de óleo essencial de hortelã-do-campo (hyptis marrubioides EPL.) cultivado sob adubação orgânica. Biosci J. 2009; 25(1): 60-68. [https://seer.ufu.br/index.php/biosciencejournal/article/view/6785].
  16. Blank AF, Fontes SM, Filho JLSC, Alves PB, Silva Mann R, Mendonça MC et al. Influência do horário de colheita e secagem de folhas no óleo essencial de melissa (Melissa officinalis L.) cultivada em dois ambientes. Rev Bras Pl Med. Botucatu. 2005; 8 (1): 73-78. Disponível em: [https://www1.ibb.unesp.br/Home/Departamentos/Botanica/RBPM-RevistaBrasileiradePlantasMedicinais/artigo14_v8_n1.pdf]. [acesso em: 25 mar. 2022].
  17. Brant RS, Pinto JEBP, Rosa LF, Albuquerque CJB, Ferri PH, Corrêa RM. Crescimento, teor e composição do óleo essencial de melissa cultivada sob malhas fotoconversoras. Ciênc Rural. 2009; 39(5): 1401-1407. ISSN 0103-8478. [https://doi.org/10.1590/S0103-84782009005000083].
  18. Luz JMQ, Silva SM, Habber LL, Marquez MOM. Produção de óleo essencial de Melissa officinalis L. em diferentes épocas, sistemas de cultivo e adubações. Rev Bras Pl Med. 2014; 16(3): 552-560. [https://doi.org/10.1590/1983-084X/11_130].
  19. Meira MR, Martins ER, Manganotti SA. Crescimento, produção de fitomassa e teor de óleo essencial de melissa (Melissa officinalis L.) sob diferentes níveis de sombreamento. Rev Bras Pl Med. 2012; 14(2): 352-357. [https://doi.org/10.1590/1983-084X/11_130].
  20. Aoyama EM, Indriunas A, Furlan MR. Produção de folhas em Melissa officinalis L. (Lamiaceae) em Taubaté, São Paulo. Rev Biociênc. 2011; 17(1): 57- 65. ISSN 14157411. Disponível em: [http://periodicos.unitau.br/ojs/index.php/biociencias/article/view/1239]. [acesso em: 25 mar. 2022].
  21. Wanderer M, Franke LB, Barros IBI. Germinação de sementes de melissa com diferentes origens. Rev Bras Agroecol. 2007; 2(1): 1114-1117. Disponível em: [https://revistas.aba-agroecologia.org.br/rbagroecologia/article/view/6494]. [acesso em: 25 mar. 2022]:
  22. Sodré ACB, Haber LL, Luz JMQ, Marques MOM, Rodrigues CR. Adubação orgânica e mineral em melissa. Hortic Bras. 2013; 31(1): 147-152. Disponível em: [http://www.abhorticultura.com.br/biblioteca/arquivos/Download/Biblioteca/pmse5011c.pdf] [acesso em: 19 mar. 2022].
  23. Santos MF, Mendonça MC, Carvalho Filho JLS, Dantas IB, Silva-Mann R, Blank AF. Esterco bovino e biofertilizante no cultivo de erva-cidreira-verdadeira (Melissa officinalis L.). Rev Bras Pl Med. 2009; 11(4): 355-359. [https://doi.org/10.1590/S1516-05722009000400001].
  24. Gomes EN, Moretele D, Biasi LA, Koehler HS, Kanis LA, Deschamps C. Pant densities and hearvest times on productive and physilogical aspects of Stevia rebaudiana Bertoni grown in southern Brazil. An Acad Bras Cienc. 2018; 90(4): 3249-3264. [http://dx.doi.org/10.1590/0001-3765201820170510].
  25. Katar D, Gürbüz B. The effect of different plant densities and nitrogen doses on drug leaf yield and some features of lemon balm (Melissa officinalis L.). J Agric Sci. 2008: 14(1): 78-81. Disponível em: [https://dergipark.org.tr/en/download/article-file/1509442]. [acesso em: 19 mar. 2022].
  26. Elguy LGP, Trevisan ACD, Coelho MP, Oliveira YEC, Madureira LAS. Manejo de biomassa e compostos majoritários de óleos essenciais de espécies do Bioma Pampa. Rev Fitos. 2021; 15(3): 333-345. [https://doi.org/10.32712/2446-4775.2021.1065].
  27. Donagema GK, de Campos DVB, Calderano SB, Teixeira WG, Viana JHM. Manual de métodos de análise de solos. 2ª edição. Embrapa Solos; 2011. ISSN 1517-2627.
  28. Albrecht WA. Soil reaction (pH) and balanced plant nutrition. Colorado: Western Soils Company; 1967.
  29. Raij BV, Cantarella H, Quaggio JÁ, Furlani AMC. Recomendações de adubação e calagem para o Estado de São Paulo. 2nd ed. Campinas, IAC; 1997. ISSN 0100-3100.
  30. Santos RS, Silva SS, Vasconcelos TCL. Aplicação de plantas medicinais no tratamento da ansiedade: uma revisão da literatura. Braz J Dev. 2021; 7(5): 52060-52074. [https://doi.org/10.34117/bjdv7n5-550].
  31. Meira M, Souza S, Martins E. Plantas medicinais, produção e cultivo da Melissa officinalis no brasil. EnciBio. 6(10). Disponível em: https://conhecer.org.br/ojs/index.php/biosfera/article/view/4680. [acesso em: 21 jul. 2022].
  32. Costa JR. Técnicas Experimentais aplicadas às Ciências Agrárias. Embrapa Agrobiologia; 2003. 120 p. ISSN 1517-8498.
  33. Boletim Climatológico Anual da Estação Meteorológica do IAG/USP/ Seção Técnica de Serviços Meteorológicos – Instituto de Astronomia, Geofísica e Ciências Atmosféricas da Universidade de São Paulo. Disponível em: [http://www.estacao.iag.usp.br/Boletins/2013.pdf]. [acesso em: 25 mar. 2022].
  34. Boletim Climatológico Anual da Estação Meteorológica do IAG/USP/ Seção Técnica de Serviços Meteorológicos – Instituto de Astronomia, Geofísica e Ciências Atmosféricas. Universidade de São Paulo - USP. Disponível em: [http://www.estacao.iag.usp.br/Boletins/2014.pdf]. [acesso em 25 mar. 2022].
  35. Brasil. Farmacopeia Brasileira. 6ª ed. Brasília; 2022. Disponível em: [https://www.gov.br/anvisa/pt-br/assuntos/farmacopeia/farmacopeia-brasileira]. [acesso em: 25 mar. 2022].
  36. McLafferty FW, Stauffer DB. Registry of Mass Spectral Data. 2nd ed. New York: Wiley- Interscience; 1989. ISBN: 9780471628866
  37. Adams RP. Identification of Essential Oil Components by Gas Cromatography/Mass Spectroscopy. 4th ed. Carol Stream: Allured Pub Corp; 2007.
  38. Viegas MC, Bassoli DG. Utilização do índice de retenção linear para caracterização de compostos voláteis em café solúvel utilizando GC-MS e coluna HP-innowax. Quim Nova. 2007; 30(8): 2031-2034. [https://doi.org/10.1590/S0100-40422007000800040].
  39. Arumugam R, Kannan RRR, Jayalakshmi J, Manivannan K, Karthikai Devi G, Anantharaman P. Determination of element contents in herbal drugs: Chemometric approach. Food Chem. 2012; 135(4): 2372-2377. [https://doi.org/10.1016/j.foodchem.2012.07.040].
  40. StatSoft, Inc. 2004. STATISTICA (data analysis software system). Version 7.
  41. ACD Chemsketch 2012. Versão 12.0. Desenvolvimento de Química Avançada, 2012.
  42. Alleoni LRF, de Beauclair EGF. Cana-de-açúcar cultivada após milho e amendoim, com diferentes doses de adubo. Sci Agric. 1995; 52(3): 409-415. [https://doi.org/10.1590/S0103-90161995000300001].
  43. Chagas JH, Pinto JEBP, Bertolucci SKV, Santos FM, Botrel PP, Pinto LBB. Produção da hortelã-japonesa em função da adubação orgânica no plantio e em cobertura. Hortic Bras. 2011; 29(3): 412-417. [https://doi.org/10.1590/S0102-05362011000300026].
  44. Sousa AH, Maracajá PB, Junior JCS, Vasconcelos EW, Maia CE. Produção de biomassa na parte aérea da erva cidreira (Melissa ssp.) em função de doses de esterco bovino, húmus de minhoca, composto orgânico e NPK em casa de vegetação. Rev Biol Ciênc Terra. 2003; 3(2): 10. ISSN 1519-5228. [https://www.redalyc.org/articulo.oa?id=50030207].
  45. Seidler-Lozykowska K, Mordalski R, Kucharski W, Kedzia E, Nowosad K, Bocianowski J. Effect of organic cultivation on yield and quality of lemon balm herb (Melissa officinalis L.). Acta Sci Pol Hortorum Cultus. 2015; 14(5): 55-67. [https://czasopisma.up.lublin.pl/index.php/asphc/article/view/2618].
  46. Zorovski P, Popov V, Gerogieva T. Development and production of fresh and dried leaf biomass of lemon balm (Melissa officinalis) under organic fertilizers treatment. Sci Paper Ser A Agron. 2020; 63(2): 253-260. ISSN 2285-5785. [http://agronomyjournal.usamv.ro/index.php/scientific-papers/past-issues?id=1181].
  47. Ayanoglu F, Arslan M, Hatay A. Effects of Harvesting Stages, Harvesting Hours and Drying Methods on Essential Oil Content of Lemon Balm Grown in Eastern Mediterranean. Int J Bot. 2005; 1(2): 138-142. [https://doi.org/10.3923/ijb.2005.138.142].
  48. Seidler-Lozykowska K, Zawirska-Wojtasiak R, Wojtowicz E, Bocianowski J. Essential oil content and its coposition in herb of lemon balm (Melissa officinalis L.) breeding strains. J Essent Oil Res. 2017; 29(4): 351-356 [https://doi.org/10.1080/10412905.2016.1278407].
  49. Mokhtarzadeh S, Demirci B, Goger G, Khawar KM, Kirimer N. Characterization of volatile components in Melissa officinalis L. under in vitro conditions. J Essent Oil Res. 2016; 29(4): 299-303. [https://doi.org/10.1080/10412905.2016.1216900].
  50. Duarte AR. Variabilidade química dos óleos essenciais e do teor de fenóis em folhas e frutos da jabuticabeira (Myrciaria cauliflora). 83f. Goiânia. 2012. Tese de Doutorado [Programa de Pós-graduação em Química] – Instituto de Química. Universidade Federal de Goiás-UFG. Goiânia. 2012. [https://repositorio.bc.ufg.br/tede/bitstream/tde/1024/1/Tese-AlessandraRodriguesDuarte.pdf].
  51. Silva SM. Sistema e época de cultivo na produção agronômica e de óleo essencial de Melissa officinalis. 48f. Belo Horizonte; 2011. Dissertação de Mestrado [Programa de Pós Graduação em Agronomia] - Universidade Federal de Uberlândia-UFU. Belo Horizonte, MG. 2011. [https://repositorio.ufu.br/handle/123456789/12148].
  52. Furlan MR, Martins RCC, Rodrigues E, Scalco N, Negri G, Lago JHG. Variação dos teores de constituintes voláteis de Cymbopogon citratus (DC) Staf, Poaceae, coletados em diferentes regiões do Estado de São Paulo. Braz J Pharmacogn. 2010; 20 (5): 686-691. [https://doi.org/10.1590/S0102-695X2010005000026].
  53. Teles S, Pereira JA, de Oliveira LM, Malheiro R, Machadoc SS, Lucchesec AM et al. Organic and mineral fertilization influence on biomass and essential oil production, composition and antioxidant activity of Lippia origanoides H.B.K. Ind Crops Prod. 2014; 59: 169-176. [https://doi.org/10.1016/j.indcrop.2014.05.010].
  54. Nasiri Y. Crop productivity and chemical compositions of dragonhead (Dracocephalum moldavica L.) essential oil under different cropping patterns and fertilization. Ind Crops Prod. 2021; 171: 113920. [https://doi.org/10.1016/j.indcrop.2021.113920].
  55. Rathore S, Mukhia S, Kapoor S, Bhatt V, Kumar R, Kumar R. Seasonal variability in essential oil composition and biological activity of Rosmarinus officinalis L. accessions in the western Himalaya. Sci Rep. 2022; 12(3305): [https://doi.org/10.1038/s41598-022-07298-x].

Author(s)

  • Fábio Vitório Sussa
    Institute for Energy and Nuclear Research (IPEN), Research Reactor Center, Av. Lineu Prestes, 2242, Butantã, CEP 05508-000, São Paulo, SP, Brazil.
    http://orcid.org/0000-0003-1222-8910
  • Marcos Roberto Furlan
    University of Taubaté, Department of Agricultural Sciences. Dean of Research and Graduate Studies. Rua Visconde do Rio Branco, 210, Centro, CEP 12020-040, - Taubaté, SP, Brazil.
    http://orcid.org/0000-0002-8853-6736
  • Paulo Sergio Cardoso Silva
    Institute for Energy and Nuclear Research (IPEN), Research Reactor Center, Av. Lineu Prestes, 2242, Butantã, CEP 05508-000, São Paulo, SP, Brazil.
    http://orcid.org/0000-0002-9351-9201

Metrics

  • Article viewed 481 time(s)

How to Cite

1.
Biomass and volatile oil production of Melissa officinalis L. (lemon balm) under different fertilizations and seasonality. Rev Fitos [Internet]. 2023 Jun. 30 [cited 2025 Dec. 8];17(2):200-17. Available from: https://revistafitos.far.fiocruz.br/index.php/revista-fitos/article/view/1450
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 Revista Fitos

Report an error