Antiproliferative activity of the bioactive compound from Silybum marianum in a human melanoma cell line with BRAF mutation: potential for therapeutic repurposing

Cléver Gomes Cardoso
OrcID
Lidia Andreu Guillo
OrcID

    Cléver Gomes Cardoso

    Universidade Federal de Goiás

    OrcID https://orcid.org/0000-0002-9175-7695

    possui graduação em Biomedicina pela Universidade Federal de Goiás (2002). Tem doutorado pela UnB em Patologia Molecular. Foi professor Visitante da UnB e Efetivo da Universidade Católica de Brasília. Tem experiência na área de Genética e Biologia Molecular, com ênfase em Biologia Celular, Genética Molecular e Microbiologia, atuando principalmente nos seguintes temas: Biologia Celular de câncer, angiogênese, transferência horizontal de DNA, Atualmente é professor associado da Universidade Federal de Goiás atuando nas disciplinas de Biologia Celular, Histologia e Histoquímica. É editor chefe da Revista de Biologia Neotripical e Revisor de Periódicos Internacionais. Atua como professor orientador no programa de Pós-Graduação em Ciências da Saúde - UFG. É bolsista de Pós-doutorado Sênior do CNPq

    Lidia Andreu Guillo

    Universidade Federal de Goiás

    OrcID https://orcid.org/0000-0003-3220-6890

    Possui graduação em Quimica pela Universidade Estadual de Campinas (1978), mestrado em Química pela Universidade Estadual de Campinas (1982) e doutorado em Ciências Biológicas (Bioquímica) pela Universidade de São Paulo (1987). Atualmente é professor titular da Universidade Federal de Goiás. Tem experiência na área de Bioquímica, com ênfase em Biologia Molecular, atuando principalmente nos seguintes temas: vitiligo, cultura de células animais e humanas, testes de citotoxidade, analise funcional de genes relacionados à pigmentação.


Keywords

Cell viability
MTT
Silibinin
Cell lines
Human melanoma

Abstract

This study investigated the in vitro antiproliferative potential of Silibinin on human melanoma cells with a BRAF gene mutation. Cell viability was assessed through incubation with different concentrations (41, 104, 207, and 518 µM) for 48 hours, using the MTT assay (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), which involves the reduction of the tetrazolium salt. The inhibitory concentration (IC50) was determined to be 240 µM. Bright-field microscopy revealed loss of cell adhesion to the substrate, a characteristic feature of cell death by apoptosis, across the tested doses. These results highlight the need for further studies to elucidate the mechanism of action and confirm its clinical efficacy.

References

  1. Gonzalez-Fierro A, Dueñas-González A. Drug repurposing for cancer therapy, easier said than done. Semin Cancer Biol. 2021 Jan; 68: 123-131. Disponível em: [https://doi.org/10.1016/j.semcancer.2019.12.012] [https://pubmed.ncbi.nlm.nih.gov/31877340/].
  2. Brasil. Ministério da Saúde. Agência de Vigilância Sanitária (ANVISA). Produtos tradicionais fitoterápicos passíveis de notificação de acordo com as formulações publicadas na 2ª edição do Formulário de Fitoterápicos da Farmacopeia Brasileira. [acesso em: 26 nov. 2024]. Disponível em: [https://www.gov.br/anvisa/pt-br/setorregulado/regularizacao/medicamentos/fitoterapicos-dinamizados-e-especificos/informes/fitoterapicos/texto-tecnico-estatico-para-publicar-na-pagina-da-area.pdf].
  3. Brasil. Ministério da Saúde. Agência de Vigilância Sanitária (ANVISA). Silybum marianum (L.) Gaertn., fructus. [acesso em: 26 nov. 2024]. Disponível em: [https://www.gov.br/anvisa/pt-br/setorregulado/regularizacao/medicamentos/fitoterapicos-dinamizados-e-especificos/monografias-traduzidas/silybum_marianum_frutop.pdf.].
  4. Cheung CW, Gibbons N, Johnson DW, Nicol DL. Silibinin--a promising new treatment for cancer. Anticancer Agents Med Chem. 2010 Mar; 10(3): 186-95. Disponível em: [https://doi.org/10.2174/1871520611009030186]. PMID: 20015009.
  5. Wang X, Zhang Z, Wu SC. Health Benefits of Silybum marianum: Phytochemistry, Pharmacology, and Applications. J Agric Food Chem. 2020 Oct 21; 68(42): 11644-11664. Disponível em: [https://doi.org/10.1021/acs.jafc.0c04791]. PMID: 33045827.
  6. Marmouzi I, Bouyahya A, Ezzat SM, El Jemli M, Kharbach M. The food plant Silybum marianum (L.) Gaertn.: Phytochemistry, Ethnopharmacology and clinical evidence. J Ethnopharmacol. 2021 Jan 30; 265: 113303. Disponível em: [https://doi.org/10.1016/j.jep.2020.113303]. PMID: 32877720.
  7. Nawaz A, Zaib S, Khan I, Ahmed A, Shahzadi K, Riaz H. Silybum marianum: An Overview of its Phytochemistry and Pharmacological Activities with Emphasis on Potential Anticancer Properties. Anticancer Agents Med Chem. 2023; 23(13): 1519-1534. Disponível em: [https://doi.org/10.2174/1871520623666230412111152]. PMID: 37055902.
  8. Abenavoli L, Izzo AA, Milić N, Cicala C, Santini A, Capasso R. Milk thistle (Silybum marianum): A concise overview on its chemistry, pharmacological, and nutraceutical uses in liver diseases. Phytother Res. 2018 Nov; 32(11): 2202-2213. Disponível em: [https://doi.org/10.1002/ptr.6171]. PMID: 30080294.
  9. Amiri M, Jafari S, Lavasanifar A, Molavi O, Montazersaheb S. Nano-delivery of Silibinin Potentiate the Induction of Immunogenic Cell Death (ICD) in Melanoma Cells. Curr Pharm Biotechnol. 2024 Mar 12; 26(3): 392-401. [https://doi.org/10.2174/0113892010280336240227062954]. PMID: 38482616.
  10. Coutinho TE, Souto EB, Silva AM. Selected Flavonoids to Target Melanoma: A Perspective in Nanoengineering Delivery Systems. Bioengineering (Basel). 2022 jun. 29; 9(7): 290. [https://doi.org/10.3390/bioengineering9070290]. PMCID: PMC9311564.
  11. Lee MH, Huang Z, Kim DJ, Kim SH, Kim MO, Lee SY, et al. Direct targeting of MEK1/2 and RSK2 by silybin induces cell-cycle arrest and inhibits melanoma cell growth. Cancer Prev Res (Phila). 2013 May; 6(5): 455-65. [https://doi.org/10.1158/1940-6207]. PMCID: PMC3644346.
  12. Makhmalzadeh BS, Molavi O, Vakili MR, Zhang HF, Solimani A, Abyaneh HS, et al. Functionalized Caprolactone-Polyethylene Glycol Based Thermo-Responsive Hydrogels of Silibinin for the Treatment of Malignant Melanoma. J Pharm Pharm Sci. 2018; 21(1): 143-159. [https://doi.org/10.18433/jpps29726]. PMID: 29789104.
  13. Patel H, Yacoub N, Mishra R, White A, Long Y, Alanazi S, Garrett JT. Current Advances in the Treatment of BRAF-Mutant Melanoma. Cancers (Basel). 2020 Feb 19; 12(2): 482. [https://doi.org/10.3390/cancers12020482]. PMCID: PMC7072236.
  14. Boutros A, Croce E, Ferrari M, Gili R, Massaro G, Marconcini R, Arecco L, Tanda ET, Spagnolo F. The treatment of advanced melanoma: Current approaches and new challenges. Crit Rev Oncol Hematol. 2024 Apr; 196: 104276. [https://doi.org/10.1016/j.critrevonc.2024.104276]. PMID: 38295889.
  15. Memorial Sloan Kettering Cancer Institutr. Tangible Materials Licencing Catalogue. [acesso em: 27 nov. 2024]. Disponível em: [https://www.mskcc.org/sites/default/files/node/25311/documents/msk-trm-catalogue-edition-4_final_may-2023.pdf].
  16. Vad N, Naik B, Moridani M. Abstract #678: Biochemical mechanism of Rutin toxicity in SK-MEL-28 melanomas cells: A tyrosinase bioactivation prodrug approach. Cancer Res. 1 May 2009; 69 (9_Supplement): 678. [https://aacrjournals.org/cancerres/article/69/9_Supplement/678/558831/Abstract-678-Biochemical-mechanism-of-Rutin].

Author(s)

Metrics

  • Article viewed 157 time(s)

How to Cite

1.
Antiproliferative activity of the bioactive compound from Silybum marianum in a human melanoma cell line with BRAF mutation: potential for therapeutic repurposing. Rev Fitos [Internet]. 2025 Jul. 9 [cited 2025 Dec. 7];19:e1812. Available from: https://revistafitos.far.fiocruz.br/index.php/revista-fitos/article/view/1812
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2025 Revista Fitos

Report an error