Plant therapeutic proteases: chemical aspects, applications and pharmaceutical formulation

Raquel Elisa Silva-López
OrcID
Patrícia Fernandes Ferreira
OrcID

    Raquel Elisa Silva-López

    Oswaldo Cruz Foundation, Farmanguinhos. Department of Natural Products. Avenida Brasil, 4365, Manguinhos, CEP 21045-900, Rio de Janeiro, RJ, Brazil.

    OrcID https://orcid.org/0000-0003-2744-7884

    Tropical Parasitic Diseases at the Universitat de Valencia in Spain. She completed a postgraduate degree in Clinical Research at Hospital Alemão -SUS. She works at FIOCRUZ as a researcher in the Department of Natural Products at the Farmanguinhos unit. She is leader of the Biochemistry of Proteases and Protease Inhibitors of Natural Origin Group. She coordinates and teaches the Biochemistry and Biological Drugs subjects of the Technical Course in Biotechnology at IOC-FIOCRUZ. She has experience in the area of Biochemistry, with an emphasis on Biochemistry of microorganisms and plants, working mainly on the following topics: characterization and purification of proteins, enzymes, protease inhibitors, Leishmania and legumes.

    Patrícia Fernandes Ferreira

    Oswaldo Cruz Foundation, Farmanguinhos. Department of Natural Products. Avenida Brasil, 4365, Manguinhos, CEP 21045-900, Rio de Janeiro, RJ, Brazil.

    OrcID https://orcid.org/0000-0001-9640-930X

    He has a master's degree in Chemical and Biochemical Process Technology from the School of Chemistry at UFRJ (2010), a degree in Biological Science: in Microbiology and Immunology from the Federal University of Rio de Janeiro (2008) and a degree and bachelor's degree in Biological Sciences from Fundação Técnico Educacional Souza Marques - FTESM (1996). He has experience in the areas of Biochemistry, Microbiology, Immunology, Biotechnology, Bioprocesses, Chemical Synthesis and Purification of natural extracts, working mainly on the following topics: Pdr5p, marine sponges, bioleaching, biosynthetic production processes of recombinant human insulin, bioinsecticide, test development diagnostics, chemical synthesis of dendrimeric peptides and research into new phytotherapeutic targets of biological origin, with specificity on a chromagrography column. From 2009 to 2013 she worked at the Bioproducts Laboratory of Farmanguinhos/FIOCRUZ as a researcher in the technology transfer process for the production of recombinant human insulin in the agreement between the company INDAR and Farmanguinhos/FIOCRUZ, as well as in the agreement for the transfer of technology for the production of bioinsecticide developed by Farmanguinhos/FIOCRUZ for the company BR3 (2011/2012). From 2015 she was part of the CDTS / Fiocruz research and development group for diagnostic tests aimed at meeting public health demands. She is currently part of the technical team at the Farmanguinhos Natural Products Laboratory / Fiocruz, aiming at the research and development of biopharmaceuticals linked to neglected diseases.


Keywords

Plant enzymes
Therapeutic protease
Immobilization
Formulation

Abstract

Proteases are enzymes that cleave peptide bonds in proteins and peptides. Are found in all living organisms and mediate many crucial functions. These enzymes have been used by man since antiquity for various purposes such as food processing and treatment of various diseases. Plants are important sources of proteases with significant activity and high thermal stability and in the presence of various chemical agents. Such requirements are essential to your pharmacological employment. Many such as papain, bromelain and phytin are marketed to treat cases of respiratory and digestive insufficiency, parasitic infections and wound healing. Therapeutic proteases are very specific and efficient; however, they have very complex structures, and their maintenance requires very specific conditions to guarantee their biological / pharmacological activities. Therefore, their formulations are designed to stabilize their structure / activity, protect against degradation, improve their pharmacokinetics, prolong their action, reduce their toxic effects and direct them to their therapeutic target. Nanotechnology has made it possible to build drug carriers, including polymeric nano / microparticles: hydrogels, dendrimers, liposomes that are capable of increasing efficacy, clinical applicability and patient compliance. Such biodegradable / biocompatible polymers are promising carriers of these therapeutic plant proteases.

References

  1. Henriques SR, Ferreira JWS, Muniz MP, Albuquerque UP. Adaptive memory and evolution of the human naturalistic mind: Insights from the use of medicinal plants. PLoS One. 2019; 14(3): e0214300. [https://doi.org/10.1371/journal.pone.0214300].
  2. Rehman HM, Cooper JW, Lam HM, Yang SH. Legume biofortification is an underexploited strategy for combatting hidden hunger. Plant Cell Environ. 2019; 42(1): 52-70. [https://doi.org/10.1111/pce.13368].
  3. Turunen P, Rowan AE, Blank K. Single-enzyme kinetics with fluorogenic substrates: lessons learnt and future directions. FEBS Lett. 2014; 588: 3553-3563. [https://doi.org/10.1016/j.febslet.2014.06.021].
  4. Depreter F, Pilcer G, Amighi, K. Inhaled Proteins: Challenges and perspectives. Int J Pharmaceutics. 2013; 447: 251-280. [https://doi.org/10.1016/j.ijpharm.2013.02.031].
  5. Botelho SM. Novas estratégias de administração de proteínas e peptídeos. Coimbra. 2014. 32f. Monografia, Mestrado Integrado [em Ciências Farmacêuticas] - Faculdade de Farmácia, Universidade de Coimbra. Portugal. 2014. [https://estudogeral.uc.pt/bitstream/10316/80572/1/M_sofia%20botelho.pdf].
  6. Prado FK. Desenvolvimento de método analítico para quantificação de antineoplásico em sistemas de liberação controlada de fármacos. São Paulo. 2019. Dissertação de Mestrado [Programa de Pós-Graduação em Fármacos e Medicamentos] - Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, USP. São Paulo. 2019. [http://www.teses.usp.br/teses/disponiveis/9/9139/tde-31072019-113148/].
  7. Vizovišek M, Vidmar R, Drag M, Fonović M, Salvesen GS, Turk B. Protease specificity: towards in vivo imaging applications and biomarker discovery. Trends Bioche Sci. 2018; 43(10): 829-844. [https://doi.org/10.1016/j.tibs.2018.07.003].
  8. Bond JS. Proteases: History, discovery, and roles in health and disease. J Biol Chem. 2019; 294:1643-1651. [https://doi.org/10.1074/jbc.TM118.004156].
  9. Rawlings ND, Barrett AJ, Thomas PD et al. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 2018; 46(D1): D624-D632. [https://doi.org/10.1093/nar/gkx1134].
  10. Mandujano-González V, Villa-Tanaca L, Anducho-Reyes MA, Mercado-Flores Y. Secreted fungal aspartic proteases: A review. Rev Iberoam Micol. 2016; 33: 76-82. [https://doi.org/10.1016/j.riam.2015.10.003].
  11. Baker PJ, Numata K. Polymerization of peptide polymers for biomaterials applications. Polymer Sci. Intech Open, 2013. ISBN: 978-953-51-6294-0.
  12. Van der Hoorn RA, Jones JD. The plant proteolytic machinery and its role in defence. Curr Opin Plant Biol. 2004; 7: 400-407. [https://doi.org/10.1016/j.pbi.2004.04.003].
  13. Van der Hoorn RAL. Plant proteases: From phenotypes to molecular mechanisms. Annu Rev Pl Biol. 2008; 59: 191–223. [https://doi.org/10.1146/annurev.arplant.59.032607.092835].
  14. Kurepa J, Wang S, Li Y et al. Proteasome regulation, plant growth and stress tolerance. Pl Signal Behav. 2009; 4: 924-927. [https://doi.org/10.4161/psb.4.10.9469].
  15. Li Q, Yi L. Commercial proteases: Present and future. FEBS Lett. 2013; 587: 1155–1163. [https://doi.org/10.1016/j.febslet.2012.12.019].
  16. Rawlings ND, Barrett AJ, Thomas PD et al. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 2018; 46(D1): D624-D632. [https://doi.org/10.1093/nar/gkx1134].
  17. SilvaLópez RE. Immunocytochemistry of proteases in the study of Leishmania physiology and host-parasite interaction in applications of immunocytochemistry In: Dehghani H, editor. Applications of immunocytochemistry. InTech, Rijeka. 2012; 267–296. [https://doi.org/10.5772/32954].
  18. Rawlings ND, Barrett AJ, Thomas PD et al. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 2018; 46(D1): D624–D632. [https://doi.org/10.1093/nar/gkx1134].
  19. McCauley JA, Rudd MT. Hepatitis C virus NS3/4a protease inhibitors. Curr Opin Pharmacol. 2016; 30: 84-92. [https://doi.org/10.1016/j.coph.2016.07.015].
  20. Craik CS, Page MJ, Madison EL. Proteases as therapeutics. Biochem. 2011; 435: 1–16. [https://doi.org/10.1042/BJ20100965].
  21. Schwaminger SP, Fraga-García P, Eigenfeld M, Becker TM, Berensmeier S. Magnetic Separation in Bioprocessing Beyond the Analytical Scale: From Biotechnology to the Food Industry. Front Bioeng Biotechnol. 2019; 7: 233. [https://doi.org/10.3389/fbioe.2019.00233].
  22. Gavrilescu M, Chisti Y. Biotechnology-a sustainable alternative for chemical industry. Biotechnol Adv. 2005; 23: 471-499. [https://doi.org/10.1016/j.biotechadv.2005.03.004].
  23. de Souza PM, Bittencourt ML, Caprara CC, de Freitas M, de Almeida RP, Silveira D et al. A biotechnology perspective of fungal proteases. Braz J Microbiol. 2015; 46: 337-46. [https://doi.org/10.1590/S1517-838246220140359].
  24. Oliveira LG, Mantovani SM. Transformações biológicas: contribuições e perspectivas Quim Nova. 2009; 32: 742-756. [https://doi.org/10.1590/S0100-40422009000300018].
  25. Chapman J, Ismail AE, Dinu CZ. Industrial Applications of Enzymes: Recent Advances, Techniques, and Outlooks. Catalysts. 2018; 8: 238. [https://doi.org/10.3390/catal8060238].
  26. Vellard M. The enzyme as drug: application of enzymes as pharmaceuticals. Curr Opin Biotechnol. 2003; 14: 444-450. [https://doi.org/10.1016/S0958-1669(03)00092-2]. PMid: 12943856.
  27. Abdel Raheem A, Johnson M, Ralph D, Garaffa G. Collagenase clostridium histolyticum: a novel medical treatment for Peyronie's disease. Minerva Urol Nefrol. 2018; 70: 380-385. [https://doi.org/10.23736/S0393-2249.18.03118-1]. PMid: 29761688.
  28. Kido H, Takahashi E, Kimoto T. Role of host trypsin-type serine proteases and influenza virus-cytokine-trypsin cycle in influenza viral pathogenesis. Pathogenesis-based therapeutic options. Biochimie. 2019; 166: 203-213. [https://doi.org/10.1016/j.biochi.2019.09.006]. PMid:31518617.
  29. Leite AP, de Oliveira BG, Soares MF, Barrocas DL. Use and effectiveness of papain in the wound healing process: a systematic review. Rev Gaucha Enferm. 2012; 33: 198-207. [https://doi.org/10.1590/S1983-14472012000300026]. PMid:23405827.
  30. Sato K, Egami F. Studies on ribonucleases in takadiastase. Int J Biochem. 1957; 44: 753-767. [https://doi.org/10.1093/oxfordjournals.jbchem.a126717].
  31. Pacheco JS, Silva-López RE. Study of the proteolytic activity of the tropical legume Crotalaria spectabilis. Z Naturforsch. 2012; 67: 495– 509. [https://doi.org/10.1515/znc-2012-9-1008]. PMid:23198408.
  32. Menou A, Duitman JW, Crestani B. The impaired proteases and anti-proteases balance in idiopathic pulmonary fibrosis. Matrix Biol. 2018; 68: 382-403. [https://doi.org/10.1016/j.matbio.2018.03.001]. PMid:29518524.
  33. Silva-López RE, Gonçalves RN. Therapeutic proteases from plants: biopharmaceuticals with multiple applications. J Appl Biotechnol Bioeng. 2019; 6: 101-109. [https://doi.org/10.15406/jabb.2019.06.00180].
  34. Silva-López, RE. Debridement applications of bromelain: a complex of cysteine proteases from pineapple. Adv Biotechnol Microbiol, 2017; 3: 1-3. [https://doi.org/10.19080/AIBM.2017.03.555624].
  35. Feijoo-Siota L, Villa T G. Native and Biotechnologically Engineered Plant Proteases with Industrial Applications. Food and Bioprocess Technol. 2011; 4: 1066–1088. [https://doi.org/10.1007/s11947-010-0431-4].
  36. Andrew C. Storer AC, Ménard R. Papain. Handbook of Proteolytic Enzymes. 2013; 2:1858-1861. [https://doi.org/10.1016/B978-0-12-382219-2.00418-X].
  37. Novinec M, Lenarčič B. Papain-like peptidases: structure, function, and evolution. Biomol Concepts. 2013; 4(3): 287–308. [https://doi.org/10.1515/bmc-2012-0054]. PMid: 25436581.
  38. Rawlings ND, Barrett AJ, Finn R. Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 2016; 44(1): 343-350. [https://doi.org/10.1093/nar/gkv1118]. PMid: 26527717 PMCid: PMC4702814
  39. Amri E, Mamboya F. Papain, a plant enzyme of biological importance: a review. Am J Biochem Biotech. 2012; 8: 99-104. [https://doi.org/10.3844/ajbbsp.2012.99.104].
  40. Dos Anjos MM, Da Silva AA, De Pascoli IC et al. Antibacterial activity of papain and bromelain on Alicyclobacillus spp. Int J Food Microbiol. 2016; 216: 121–126. 27. [https://doi.org/10.1016/j.ijfoodmicro.2015.10.007]. PMid:26476327.
  41. Moraes D, Levenhagen MA, Costa-Cruz JM et al. In vitro efficacy of latex and purified papain from Carica papaya against Strongyloides venezuelensis eggs and larvae. Rev Inst Med Trop. 2017; 9. [https://doi.org/10.1590/s1678-9946201759007].
  42. Mota VS, Turrini RNT, Poveda VB. Antimicrobial activity of Eucalyptus globulus oil, xylitol and papain: a pilot study. Rev Esc Enferm. 2015; 49: 216–220. [https://doi.org/10.1590/S0080-623420150000200005]. PMid: 25992819.
  43. Müller A, Barat S, Chen X, Bui KC, Bozko P, Malek NP, Plentz RR. Comparative study of antitumor effects of bromelain and papain in human cholangiocarcinoma cell lines. Int J Oncol. 2016; 48(5): 2025-34. [https://doi.org/10.3892/ijo.2016.3411]. PMid: 26935541.
  44. Leite AP, De Oliveira BG, Soares MF et al. Use and effectiveness of papain in the wound healing process: a systematic review. Rev Gaúcha Enf. 2012; 33: 198-207. [https://doi.org/10.1590/S1983-14472012000300026].
  45. Shindo T, Van de Hoorn RAL. Papain-like cysteine proteases: key players at molecular battlefields employed by both plants and their invaders. Mol Plant Pathol. 2008; 9: 119–125. [https://doi.org/10.1111/j.1364-3703.2007.00439.x].
  46. Chen YY, Lu YH, Ma CH et al. A novel elastic liposome for skin delivery of papain and its application on hypertrophic scar. Biomed Pharmacother. 2017; 87: 82–91. [https://doi.org/10.1016/j.biopha.2016.12.076].
  47. De Lencastre Novaes LC, Jozala AF, Lopes AM et al. Stability, purification, and applications of bromelain: a review. Biotechnol Prog. 2016; 3(2): 5-13. [https://doi.org/10.1002/btpr.2190].
  48. Taussig SJ, Batkin S. Bromelain, the enzyme complex of pineapple (Ananas comosus) and its clinical application. J Ethnopharmacol. 1988; 22: 191-203. [https://doi.org/10.1016/0378-8741(88)90127-4].
  49. Bhui K, Prasad S, George J, Shukla Y. Bromelain inhibits COX-2 expression by blocking the activation of MAPK regulated NFkappa B against skin tumor-initiation triggering mitochondrial death pathway. Cancer Lett. 2009; 282: 167-176. [https://doi.org/10.1016/j.canlet.2009.03.003].
  50. Mynott TL, Guandalini S, Raimondi F, Fasano A. Bromelainprevents secretion caused by Vibrio cholerae and Escherichia coli enterotoxins in rabbit ileum in vitro. Gastroenterol. 1997; 113(1): 175-84. [https://doi.org/10.1016/S0016-5085(97)70093-3].
  51. Secor ER, Szczepanek SM, Castater CA, Adami AJ, Matson AP, Rafti ET et al. Bromelain inhibits alergic sensitization and murine asthma via modulation of dendritic cells. Evid Based Compl Alternat Med. 2013; 2013. [https://doi.org/10.1155/2013/702196].
  52. Jayachandran S, Khobre P. Efficacy of bromelainalong with trypsin, rutoside trihydrate enzymes and diclofenac sodium combination therapy for the treatment of TMJ Osteoarthritis - A randomised clinical trial. J Clin Diagn Res. 2017 Jun; 11(6): 09-11. [https://doi.org/10.7860/JCDR/2017/25771.9964].
  53. Baeyens-Volant D, Matagne A, El Mahyaoui R et al. A novel form of ficin from Ficus carica latex: purification and characterization. Phytochem. 2015; 117: 154-167. [https://doi.org/10.1016/j.phytochem.2015.05.019].
  54. Shahidi S, Jamili S, Ghavam Mostafavi P, Rezaie S, Khorramizadeh M. Assessment of the inhibitory effects of ficin-hydrolyzed gelatin derived from squid (Uroteuthis duvauceli) on breast cancer cell lines and animal model. Iran J Allergy Asthma Immunol. 2018; 17: 436-452. [https://doi.org/10.18502/ijaai.v17i5.302].
  55. Raskovic B, Lazic J, Polovic N. Characterisation of general proteolytic, milk clotting and antifungal activity of Ficus carica latex during fruit ripening. J Sci Food Agric. 2016; 96: 576–582. [https://doi.org/10.1002/jsfa.7126].
  56. Storpirtis S, Gonçalves JE, Chiann C, Gai MN. Ciências farmacêuticas: Biofarmacotécnica. Ed. Guanabara Koogan, Rio de Janeiro, 2009.
  57. Nasciutti PR. Desenvolvimento de novos fármacos. Goiás, 2012. Seminário Aplicado [Programa de Pós-Graduação em Ciência Animal] - Escola de Veterinária e Zootecnia da Universidade Federal de Goiás, UFGO. Goiás, 2012. [https://files.cercomp.ufg.br/weby/up/67/o/1%C2%B0_Semin%C3%A1rio_PRISCILLA_NASCIUTTI.pdf?1350665635].
  58. Loyd V, Allen Jr, Nicholas GP, Howard CA. Formas Farmacêuticas e Sistemas de Liberação de Fármacos. Ed. Artmed 9ª ed, 2013.
  59. Melo CS, Junior AC, Fialho SL. Formas farmacêuticas poliméricas para a administração de peptídeos e proteínas terapêuticos. Rev Ciênc Farm Básica Apl. 2012; 33(4): 469-477. [https://rcfba.fcfar.unesp.br/index.php/ojs/article/view/249].
  60. McClements DJ. Encapsulation, protection, and delivery of bioactive proteins and peptides using nanoparticle and microparticle systems: a review. Adv Colloid Interface Sci. 2018; 253: 1-22. [https://doi.org/10.1016/j.cis.2018.02.002].
  61. Almeida AJ, Souto E. Solid lipid nanoparticles as drug delivery systems for peptides and proteins. Adv Drug Del Rev. 2007; 59(6): 478-90.
  62. [https://doi.org/10.1016/j.addr.2007.04.007].
  63. Feitosa RC, Geraldes DC, de-Araújo BVL, Costa JSR, Oliveira-Nascimento L. Pharmacokinetic aspects of nanoparticle-in-matrix drug delivery systems for oral/buccal delivery. Front Pharmacol. 2019; 10: 1057.
  64. [https://doi.org/10.3389/fphar.2019.01057].
  65. Bizerra A, Silva V. Sistemas de liberação controlada: mecanismos e aplicações. Rev Saúde Meio Amb - RESMA. 2016; 3(2): 1-12. [https://periodicos.ufms.br/index.php/sameamb/article/view/1943].
  66. Moeller EH, Jorgensen L. Alternative routes of administration for systemic delivery of protein pharmaceuticals. Drug Discov Today Technol. 2008; 5(2-3): 89-94.
  67. [https://doi.org/10.1016/j.ddtec.2008.11.005].
  68. Silva AC, Lopes CM, Lobo JMS, Amaral MH. Delivery systems for biopharmaceuticals. Part I: Nanoparticles and Microparticles. Current Pharmaceutic Biotechnol. 2015; 16: 940-954. [https://doi.org/10.2174/1389201016666150731112532].
  69. Lin YW, Zhou QT, Hu Y, Onufrak NJ, Sun S, Wang J, Forrest A, Chan HK, Li J. Pulmonary pharmacokinetics of colistin following administration of dry powder aerosols in rats. Antimicrob Agents Chemother. 2017; 61(11).)
  70. [https://doi.org/10.1128/AAC.00973-17].
  71. Steiner V, Öhlinger K, Corzo C, Salar-Behzadi S, Fröhlich E. Cytotoxicity screening of emulsifiers for pulmonary application of lipid nanoparticles. Eur J Pharm Sci. 2019; 136: 104968. [https://doi.org/10.1016/j.ejps.2019.104968].
  72. Mitragotri S, Burke PA, Langer R. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat Rev Drug Discov. 2014; 13(9): 655-72. [https://doi.org/10.1038/nrd4363].
  73. Griffin BT, Guo J, Presas E, Donovan MD, Alonso MJ, O'Driscoll CM. Pharmacokinetic, pharmacodynamic and biodistribution following oral administration of nanocarriers containing peptide and protein drugs. Adv Drug Deliv Rev. 2016; 106: 367-380. [https://doi.org/10.1016/j.addr.2016.06.006].
  74. Muheem A, Shakeel F, Jahangir MA, Anwar M, Mallick N, Jain GK et al. A review on the strategies for oral delivery of proteins and peptides and their clinical perspectives. Saudi Pharmaceutical J. 2016; 24: 413-428. [https://doi.org/10.1016/j.jsps.2014.06.004].
  75. Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015; 33(9): 941–951. [https://doi.org/10.1038/nbt.3330].
  76. Bai JP, Chang LL, Guo JH. Effects of polyacrylic polymers on the lumenal proteolysis of peptide drugs in the colon. J Pharm Sci.1995; 84: 1291-1294. [https://doi.org/10.1002/jps.2600841107].
  77. Silva C, Ribeiro A, Ferreira D, Veiga F. Administração oral de peptídios e proteínas: Estratégias gerais para aumento da biodisponibilidade oral. Rev Bras Cienc Farm. 2002; 38:125-140. [https://doi.org/10.1590/S1516-93322002000200002].
  78. Réus M, Carmignan F, Lemos Senna E, Campos AM. Nanopartículas Poliméricas na Administração Tópica Ocular de Fármacos. Lat Am J Pharm. 2009; 28: 125-132.
  79. Zhang L, Wang S, Zhang M, Sun J. Nanocarriers for oral drug delivery. J Drug Target. 2013; 21: 515-527. [https://doi.org/10.3109/1061186X.2013.789033].
  80. Wang L, Liu Y, Zhang W, Chen X, Yang T, Ma G. Microspheres and microcapsules for protein delivery: Strategies of drug activity retention. Curr Pharm Des. 2013; 19: 6340-6352. [https://doi.org/10.2174/1381612811319350010].
  81. Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F. Nanoencapsulation II. Biomedical applications and current status of peptide and protein nanoparticulate delivery systems. Nanomedicine. 2006; 2: 53-65. [https://doi.org/10.1016/j.nano.2006.04.009].
  82. Lu XY, Wu DC, Li ZJ, Chen GQ. Polymer nanoparticles. Prog Mol Biol Transl Sci. 2011; 104: 299-323. [https://doi.org/10.1016/B978-0-12-416020-0.00007-3].
  83. Qodratnama R, Serino LP, Cox HC, Qutachi O, White LJ. Formulations for modulation of protein release from large-size PLGA microparticles for tissue engineering. Mater Sci Eng C Mater Biol Appl. 2015; 47: 230-6. [https://doi.org/10.1016/j.msec.2014.11.003].
  84. Liu Y, Lu W, Wang J, Zhang X, Zhang H, Wang X et al. Controlled delivery of recombinant hirudin based on thermo-sensitive Pluronic® F127 hydrogel for subcutaneous administration: in vitro and in vivo characterization. J Control Release. 2007; 117: 387-95. https://doi.org/10.1016/j.jconrel.2006.11.024
  85. Sokker HH, Abdel Ghaffar AM, Gad YH, Aly AS. Synthesis and characterization of hydrogels based on grafted chitosan for the controlled drug release. Carbohyd Polym. 2009; 75: 222-229. https://doi.org/10.1016/j.carbpol.2008.06.015
  86. Hoare TR, Kohane DS. Hydrogels in drug delivery: progress and challenges. Polymer. 2008; 49: 1993-2007. https://doi.org/10.1016/j.polymer.2008.01.027
  87. Kashyap N, Viswanad B, Sharma G, Bhardwaj V, Ramarao P, Kumar MNV. Design and evaluation of biodegradable, biosensitive in situ gelling system for pulsatile delivery of insulin. Biomaterials. 2007; 28: 2051-2060. https://doi.org/10.1016/j.biomaterials.2007.01.007
  88. Nanjwade BK, Bechra HM, Derkar GK, Manvi FV, Nanjwade VK. Dendrimers: emerging polymers for drug-delivery systems. Eur J Pharm Sci. 2009; 38: 185-196. https://doi.org/10.1016/j.ejps.2009.07.008
  89. Pimenta LFC. Influência de dendrímeros e da iontoforese na penetração da protoporfirina IX em tumores cutâneos. Ribeirão Preto. 2013. Dissertação de Mestrado [Programa de Pós-Graduação em Ciências Farmacêuticas] - Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, USP, Ribeirão Preto, SP. 2013. [https://doi.org/10.11606/D.60.2013.tde-18122013-093754].
  90. Onoue S, Yamada S, Chan HK. Nanodrugs: pharmacokinetics and safety. Int J Nanomedicine. 2014; 9: 1025-1037. https://doi.org/10.2147/IJN.S38378
  91. D’Abreu DP. Sistemas de nanopartículas híbridas para veiculação de DNA. Lisboa. 2017. Monografia, Mestrado Integrado [em Ciências Farmacêuticas] - Faculdade de Farmácia. Universidade de Lisboa. Lisboa. Portugal. 2017. [https://repositorio.ul.pt/bitstream/10451/36115/1/MICF_Diana_Pereira_DAbreu.pdf].
  92. Coutinho JA. Nanopartículas na entrega eficaz e segura de fármacos ao cérebro por via nasal Experiência Profissionalizante na vertente de Farmácia Comunitária, Hospitalar e Investigação. Covilhã. 2015. 138f. Dissertação de Mestrado [Programa de Pós-Graduação em Ciências Farmacêuticas] – Ciências da Saúde. Universidade da Beira Interior, Covilhã. Portugal. 2015. [https://ubibliorum.ubi.pt/handle/10400.6/5324].
  93. Batista CM, Carvalho CMB, Magalhães NSS. Lipossomas e aplicações terapêuticas: Estado da arte. Braz J Pharma Sci. 2007; 43: 25-38. https://doi.org/10.1590/S1516-93322007000200003
  94. Dés Rieux A, Fievez V, Garinot M, Schneider Y, Préat V. Nanoparticles as potential oral delivery systems of proteins and vaccines: A mechanistic approach. J Control Release. 2006; 116: 1-27. https://doi.org/10.1016/j.jconrel.2006.08.013
  95. Grabnar PA, Kristl J. The manufacturing techniques of drug-loaded polymeric nanoparticles from preformed polymers. J Microencapsul. 2011; 28: 323-35. https://doi.org/10.3109/02652048.2011.569763
  96. Mundargi RC, Babu VR, Rangaswamy V, Patel P, Aminabhavi TM. Nano/micro technologies for delivering macromolecular therapeutics using poly(d,l-lactide-co-glycolide) and its derivatives. J Control Release. 2008; 125: 193-209. https://doi.org/10.1016/j.jconrel.2007.09.013
  97. Ré MI. Formulating Drug Delivery Systems by Spray Drying. Drying Technol. 2006; 24: 433-446. https://doi.org/10.1080/07373930600611877
  98. Mishra D K, Ashish KP, Prateek KJ. A review on various techniques of microencapsulation. Int J Pharma Chem Sci. 2013; 2: 172-205. [https://ijpcsonline.com/files/files/66-524.pdf].

Most read articles by the same author(s)

Author(s)

  • Raquel Elisa Silva-López
    Oswaldo Cruz Foundation, Farmanguinhos. Department of Natural Products. Avenida Brasil, 4365, Manguinhos, CEP 21045-900, Rio de Janeiro, RJ, Brazil.
    https://orcid.org/0000-0003-2744-7884
  • Patrícia Fernandes Ferreira
    Oswaldo Cruz Foundation, Farmanguinhos. Department of Natural Products. Avenida Brasil, 4365, Manguinhos, CEP 21045-900, Rio de Janeiro, RJ, Brazil.
    https://orcid.org/0000-0001-9640-930X

Metrics

  • Article viewed 104 time(s)

How to Cite

1.
Plant therapeutic proteases: chemical aspects, applications and pharmaceutical formulation. Rev Fitos [Internet]. 2024 Mar. 14 [cited 2024 Nov. 21];18:e914. Available from: https://revistafitos.far.fiocruz.br/index.php/revista-fitos/article/view/914
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Revista Fitos

Report an error
Deprecated: urlencode(): Passing null to parameter #1 ($string) of type string is deprecated in /sites/producao/revistafitos.far/revistafitos_3405/plugins/generic/coins/CoinsPlugin.php on line 131