Espécies vegetais descritas em área de reserva da biosfera da Mata Atlântica como fonte para novos compostos bioativos

Fernando Vítor de Vasconcelos Rodrigues Silva
OrcID
Gloria Narjara Santos da Silva
OrcID

    Fernando Vítor de Vasconcelos Rodrigues Silva

    Universidade Federal da Bahia

    OrcID https://orcid.org/0009-0005-9425-2712

    Graduação em curso em Farmácia pela Universidade Federal da Bahia (UFBA)

    Gloria Narjara Santos da Silva

    Universidade Federal da Bahia

    OrcID https://orcid.org/0000-0002-6584-201X

    Possui graduação em Farmácia (2008) e Mestrado em Ciências Farmacêuticas (2010) pela Universidade Federal de Santa Maria (UFSM). Doutorado em Ciências Farmacêuticas (2014) pela Universidade Federal do Rio Grande do Sul (UFRGS), com estágio sandwich no Laboratório de Biologia Molecular e Celular do Plasmodium da Universidade de São Paulo (USP) (2011) e no Departamento de Farmacologia e Fisiologia da Rutgers, The University of New Jersey, Newark, NJ, USA, (2013). Pós-Doutorado no Programa de Pós-Graduação em Ciências Farmacêuticas- UFRGS (2014-2015) e Queen Mary University of London (QMUL), UK, (2016-2017). Atuação como orientadora e docente em disciplinas nível graduação e pós-graduação na Universidade Regional Integrada (URI), Campus Frederico Westphalen, RS, (2014-2018) e na Universidade Federal de Goiás (UFG) como professora substituta (2019-2021). Pós-doutorado no Programa de Pós-Graduação em Ciências Biológicas- PPGCB/UFG (2020-2021). Atualmente, atua como Professora do Magistério Superior, denominação Adjunto A, Classe A, nível II, em regime de Dedicação Exclusiva, no Departamento do Medicamento da Faculdade de Farmácia da Universidade Federal da Bahia (UFBA). Principal experiência na pesquisa nas áreas de química medicinal e farmacognosia, com ênfase em isolamento, semissíntese, elucidação estrutural e avaliação de atividade biológica de constituintes químicos vegetais e derivados, especialmente da classe dos terpenos.


Palavras-chave

Parque das Dunas
Espécies vegetais
Mata Atlântica
Propriedades Farmacológicas
Perfil Tóxico
Predição in silico
Metabólitos secundários

Resumo

Esse trabalho consistiu na revisão sistemática da literatura referente às espécies vegetais catalogadas no Parque das Dunas de Salvador - BA, região aclamada com o título de reserva da biosfera da Mata Atlântica pela UNESCO (United Nations Educational, Scientific and Cultural Organization). O critério de inclusão foram pesquisas sobre atividade farmacológica, perfil fitoquímico e tóxico das espécies, das bases de dados PubMed, SciELO e Science Direct, em português e inglês, sem período delimitado. Como descritores foram utilizados os nomes científicos das trinta espécies catalogadas. Os metabólitos secundários isolados e ativos tiveram os parâmetros físico-químicos e predição da toxicidade in silico avaliados. Verificou-se que, das trinta espécies doze foram investigadas quanto à atividade farmacológica e/ou perfil fitoquímico e tóxico, com maioria dos estudos envolvendo Chrysobalanus icaco L. (Chrysobalanaceae). Encontrou-se vinte cinco compostos bioativos, predominantemente das classes terpeno e flavonoide, e dezoito estudos com avaliação da segurança de sete espécies. A análise in silico mostrou que dez compostos não violaram as regras de Lipinski e Veber, e apenas três com alto potencial tóxico. Essa revisão reuniu dados que apontaram para a utilização de produtos naturais do território brasileiro em pesquisas que poderão culminar no desenvolvimento de fármacos inovadores. 

Referências

  1. Pimentel VP, Vieira VAM, Mitidieri TL, Oliveira FFS, Pieroni JP. Biodiversidade brasileira como fonte da inovação farmacêutica: uma nova esperança? Rev BNDES. Rio de Janeiro. 2015; 43: 41-89. ISSN: 0104-5849. Disponível em: [http://web.bndes.gov.br/bib/jspui/handle/1408/5602].
  2. Pinto LP, Bedê L, Paese A, Fonseca M, Paglia A, Lamas I. Mata Atlântica Brasileira: os desafios para a conservação da biodiversidade de um Hotspot mundial. In: Rocha CFD et al. (Eds.). Biologia da conservação: essências. São Carlos, Rima Editora. 2006; 91-118. Disponível em: [https://www.researchgate.net/publication/262910585_Mata_Atlantica_brasileira_Os_desafios_para_a_conservacao_da_biodiversidade_de_um_hotspot_mundial].
  3. Azevedo NH, Martini AMZ, Oliveira AA, Scarpa DL. Ecologia na restinga: uma sequência didática argumentativa. 1st ed. São Paulo: Edição dos autores, 2014. ISBN-13: 9788591694808. [https://doi.org/10.11606/9788591694808].
  4. Santos AR. Restinga. 2018. Disponível em: [https://sigep.eco.br/glossario/]. [acesso em: 28 fev. 2024].
  5. UNIDUNAS. – Parque das Dunas. Disponível em: [https://unidunas.com.br/]. acesso em: 18 de janeiro 2023.
  6. De Almeida TS, Rocha JBT, Rodrigues FFG, Campos AR, Costa JGM. Chemical composition, antibacterial and antibiotic modulatory effect of Croton campestris essential oils. Ind Crops Prod. 2013; 44: 630–3. ISSN: 0926-6690. [http://dx.doi.org/10.1016/j.indcrop.2012.09.010]
  7. De Assis PA, Theodoro PNET, Paula JE, Araújo AJ, Costa-Lotufo LV, Michel S et al. Antifungal ether diglycosides from Matayba guianensis Aublet. Bioorg Med Chem Lett. 2014; 24(5): 1414–16. ISSN: 0960-894X. [https://doi.org/10.1016/j.bmcl.2014.01.022]
  8. Oliveira-Tintino CDM, Pessoa RT, Fernandes MNM, Alcântara IS, Silva BAF, Oliveira MRC et al. Anti-inflammatory and anti-edematogenic action of the Croton campestris A. St.-Hil (Euphorbiaceae) essential oil and the compound β-caryophyllene in in vivo models. Phytomedicine. 2018; 41: 82–95. ISSN: 0944-7113. [https://doi.org/10.1016/j.phymed.2018.02.004].
  9. Barbosa AP, Silveira GO, Menezes IAC, Rezende Neto JM, Bitencurt JLC, Estavam CS et al. Antidiabetic effect of the Chrysobalanus icaco L. aqueous extract in rats. J Med Food. 2013; 16(6): 538-43. ISSN: 1557-7600. [https://doi.org/10.1089/jmf.2012.0084].
  10. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017; 7(42717). ISSN: 2045-2322. [https://doi.org/10.1038/srep42717].
  11. Osiris Data Warrior 5.5.0. Disponível em: [https://www.organic-chemistry.org/prog/peo/].
  12. Lipinski CA. Lead-and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol. 2004; 1(4): 337-41. ISSN: 17406749. [https://doi.org/10.1016/j.ddtec.2004.11.007].
  13. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002; 45(12): 2615-23. ISSN: 0022-2623. [https://doi.org/10.1021/jm020017n].
  14. Onilude HA, Kazeem MI, Adu OB. Chrysobalanus icaco: A review of its phytochemistry and pharmacology. J Integ Med. 2021; 19(1): 13-9. ISSN: 2095-4964. [https://doi.org/10.1016/j.joim.2020.10.001].
  15. Gustafson KR, Munro MHG, Blunt JW, Cardellina JH, McMahon JB, Gulakowski RJ et al. HIV inhibitory natural products. 3. Diterpenes from Homalantus acuminatus and Chrysobalanus icaco. Tetrahedron. 1991; 47(26): 4547-54. ISSN: 0040-4020. [https://doi.org/10.1002/chin.199136246].
  16. De Paulo AS, Balassiano IT, Silva NH, Castilho RO, Kaplan MAC, Cabral MC et al. Chrysobalanus icaco L. extract for antiangiogenic potential observation. Int J Mol Med. 2000; 5(6): 667-76. ISSN: 1107-3756. [https://doi.org/10.3892/ijmm.5.6.667].
  17. Fernandes J, Castilho RO, Costa MR, Souza KW, Kaplan MAC, Gattass CR. Pentacyclic triterpenes from Chrysobalanaceae species: cytotoxicity on multidrug resistant and sensitive leukemia cell lines. Cancer Lett. 2003; 190(2): 165-9. ISSN: 0304-3835. [https://doi.org/10.1016/s0304-3835(02)00593-1].
  18. Fernandes J, Weinlich R, Castilho RO, Kaplan MAC, Mendes GPA, Gattass CR. Pomolic acid triggers mitochondria-dependent apoptotic cell death in leukemia cell line. Cancer Lett. 2005; 219(1): 49-55. ISSN: 0304-3835. [https://doi.org/10.1016/j.canlet.2004.09.001].
  19. Vasconcelos FC, Gattas CR, Fernandes J, Rumjanek VMD, Maia RC. Pomolic Acid-Induced apoptosis in cells from chronic myeloid leukemic patients is not affected by the MDR Phenotype and Status of Disease. Blood. 2005; 106(11): 4889. ISSN: 0006-4971. [https://doi.org/10.1182/blood.V106.11.4889.4889].
  20. Fernandes J, Weinlich R, Castilho RO, Mendes GPA, Gattass CR. Pomolic acid may overcome multidrug resistance mediated by overexpression of anti-apoptotic Bcl-2 proteins. Cancer Lett. 2007; 245(1-2): 315–20. ISSN: 0304-3835. [https://doi.org/10.1016/j.canlet.2004.09.001].
  21. Port’S PS, Chisté RC, Godoy HT, Prado MA. The phenolic compounds and the antioxidant potential of infusion of herbs from the Brazilian Amazonian region. Food Res. Int. 2013; 53: 875-81. ISSN: 0963-9969. [https://doi.org/10.1016/j.foodres.2013.02.010].
  22. Ribeiro TG, Fumagalli MAC, Valadares DG, Franca JR, Lage PS, Duarte MC et al. Antileishmanial activity and cytotoxicity of Brazilian plants. Exp Parasitol. 2014; 143: 60-8. ISSN: 0014-4894. [https://doi.org/10.1016/j.exppara.2014.05.004].
  23. Venâncio VP, Cipriano PA, Kim H, Antunes LMG, Talcott ST, Mertens-Talcott AU. Cocoplum (Chrysobalanus icaco L.) anthocyanins exert anti-inflammatory activity in human colon cancer and non-malignant colon cells. Food Funct. 2017; 8(1): 307-14. ISSN: 2042-6496.
  24. [https://doi.org/10.1039/c6fo01498d].
  25. Araujo-Filho HG, Dias JDS, Quintans-Júnior LJ, Santos MRV, White PAS, Barreto RSS et al. Phytochemical screening and analgesic profile of the lyophilized aqueous extract obtained from Chrysobalanus icaco leaves in experimental protocols. Pharm Biol. 2016; 54(12): 3055-62. ISSN: 1388-0209. [https://doi.org/10.1080/13880209.2016.1204618].
  26. Silva JPB, Peres ARMN, Paixão TP, Silva ASB, Baetas AC, Barbosa WLR et al. Antifungal activity of hydroalcoholic extract of Chrysobalanus icaco against oral clinical isolates of Candida Species. Pharmacogn Res. 2017; 9(1): 96-100. ISSN: 0976-4836. [https://doi.org/10.4103/0974-8490.199772].
  27. White PAS, Araújo JMD, Cercato LM, Souza LA, Barbosa APO, Quintans-Junior LJ et al. Chrysobalanus icaco L. Leaves Normalizes Insulin Sensitivity and Blood Glucose and Inhibits Weight Gain in High-Fat Diet-Induced Obese Mice. J Med Food. 2016; 19(2): 155-60. ISSN: 1557-7600. [https://doi.org/10.1089/jmf.2015.0034 ].
  28. White PAS, Cercato LM, Batista VS, Camargo EA, Lucca Jr W, Oliveira AS et al. Aqueous extract of Chrysobalanus icaco leaves, in lower doses, prevent fat gain in obese high-fat fed mice. J Ethnopharmacol. 2016; 179: 92-100. ISSN: 0378-8741. [https://doi.org/10.1016/j.jep.2015.12.047].
  29. Portela-de-Sá HHP, Freitas PA, Oliveira KA, Vasconcelos YAG, Vasconcelos RP, Fonseca SGC et al. Effect of an aqueous extract of Chrysobalanus icaco on the adiposity of Wistar rats fed a high-fat diet. Nutr Hosp. 2020; 37(4): 763-9. ISSN: 1699-5198.
  30. [https://dx.doi.org/10.20960/nh.03030].
  31. Liu I, Tzeng TF, Liou SS, Lan TW. Myricetin, a naturally occurring flavonol, ameliorates insulin resistance induced by a high-fructose diet in rats. Life Sci. 2007; 81(21-22): 1479–88. ISSN: 0024-3205. [ https://doi.org/10.1016/j.lfs.2007.08.045].
  32. Babujanarthanam R, Kavitha P, Pandiam MR. Quercitrin, a bioflavonoid improves glucose homeostasis in streptozotocin-induced diabetic tissues by altering glycolytic and gluconeogenic enzymes. Fund Clin Pharmacol. 2010; 24: 357–64. ISSN: 0767-3981. [https://doi.org/10.1111/j.1472-8206.2009.00771.x].
  33. Venâncio VP, Almeida MR, Antunes LM G. Cocoplum (Chrysobalanus icaco L.) decreases doxorubicin-induced DNA damage and downregulates Gadd45a, Il-1β, and Tnf-α in vivo. Food Res Int. 2018; 105: 996-1002. ISSN: 0963-9969. [https://doi.org/10.1016/j.foodres.2017.12.009].
  34. Venâncio VP, Marques MC, Almeida MR, Mariutti LRB, Souza VCO, Barbosa Jr F et al. Chrysobalanus icaco L. fruits inhibit NADPH oxidase complex and protect DNA against doxorubicin-induced damage in Wistar male rats. J Toxicol Environ Health A. 2016; 79(20): 885-93. ISSN: 1528-7394. [https://doi.org/10.1080/15287394.2016.1193454].
  35. Govaerts R, Frodin RG, Radcliffe-smith A. Croton Pp. In: World checklist and bibliography of Euphorbiaceae (and Pandaceae). Kew, Royal Botanic Gradens Kew. 2000. ISBN: 1900347830.
  36. Berry PE, Hipp AL, Wurdack KJ, Ee BV, Riina R. Molecular phylogenetics of the giant genus Croton and tribe Crotoneae (Euphorbiaceae sensu stricto) using ITS and trnL-trnF sequence data. Am J Bot. 2005; 92(9): 1520-34. ISSN: 0002-9122. [https://doi.org/10.3732/ajb.92.9.1520]
  37. Coutinho HDM, Matias EFF, Santos KKA, Santos FAV, Morais-Braga MFB, Souza TM et al. Modulation of the norfloxacin resistance in Staphylococcus aureus by Croton campestris A. and Ocimum gratissimum L. Biomedica. 2011; 31: 608-12. ISSN: 0120-4157. [https://doi.org/10.1590/S0120-41572011000400016 ]
  38. Lavor AKLS, Matias EFF, Alves EF, Santos BS, Figueredo FG, Lima LF et al. Association between drugs and herbal products: In vitro enhancement of theantibiotic activity by fractions from leaves of Croton campestris A. (Euphorbiaceae). Eur J Integr. Med. 2014; 6(3): 301-6. ISSN: 1876-3820. [https://doi.org/10.1016/j.eujim.2014.03.002]
  39. Matias EFF, Santos KKA, Almeida TS, Costa JGM, Coutinho HDM. A. Phytochemical Prospection and Modulation of Aminoglycoside Antibiotic Activity by Croton campestris A. Chemotherapy. 2011; 57: 305-9. ISSN: 0009-3157. [https://doi.org/10.1159/000328975].
  40. Pereira EM, Gomes RT, Freire NR, Aguiar EG, Brandão MGL, Santos VR. In vitro antimicrobial activity of Brazilian medicinal plant extracts against pathogenic microorganisms of interest to dentistry. Pl Med. 2011; 77(4): 401-4. ISSN: 0032-0943. [https://doi.org/10.1055/s-0030-1250354].
  41. El Babilli F, Roques C, Haddioui L, Bellvert F, Bertrand C, Chatelain C. Velamo do Campo: Its volatile constituents, secretory elements, and biological activity. J Med Food. 2012; 15(7): 671-6. ISSN: 1557-7600. [https://doi.org/10.1089/jmf.2011.0252].
  42. Júnior FEB, Oliveira DR, Bento EB, Leite LHI, Souza DO, Siebra ALA et al. Antiulcerogenic activity of the hydroalcoholic extract of leaves of Croton campestris A. St.-Hill in rodents. Evid Based Complem Altern Med. 2013. ISSN: 1741-427X. [https://doi.org/10.1155/2013/579346].
  43. Monteiro PA, Zelioli ÍAM, Sousa IMO, Ruiz ALTG, Costa DBV, Foglio MA et al. Chemical composition and antiproliferative activity of Croton campestris A.St.-Hil. essential oil. Nat Prod Res. 2017; 33(4): 580-3. ISSN: 1478-6419. [https://doi.org/10.1080/14786419.2017.1399377].
  44. Gomes KK, Macedo GE, Rodrigues NR, Ziech CC, Martins lK, Rodrigues JF et al. Croton campestris A. St.-Hill Methanolic Fraction in a Chlorpyrifos-Induced Toxicity Model in Drosophila melanogaster: Protective Role of Gallic Acid. Oxid Med Cell Longev. 2020; 22. ISSN: 1942-0994. [https://doi.org/10.1155/2020/3960170].
  45. Joly AB. Botânica: Introdução à Taxonomia Vegetal. Companhia Ed. Nacional, 1998. ISBN-13: 978-8504002317.
  46. Hashimoto Y, Kawanishi, K. New alkaloids from Banisteriopsis caapi. Phytochemistry. 1976; 15(10): 1559-60. ISSN: 0031-9422. [https://doi.org/10.1016/S0031-9422(00)88936-0].
  47. Aguiar R M, David JP, David JM. Unusual naphthoquinones, catechin and triterpene from Byrsonima microphylla. Phytochemistry. 2005; 66(19): 2388–92. ISSN: 0031-9422. [https://doi.org/10.1016/j.phytochem.2005.07.011].
  48. Mendes CC, Cruz FG, David JM, Nascimento IP, David JP. Triterpenos esterificados com ácidos graxos e ácidos triterpênicos isolados de Byrosonima microphylla. Quím Nova. 1999; 22(2): 185-8. ISSN: 0100-4042. [https://doi.org/10.1590/S0100-40421999000200007].
  49. Mól DFF. Rubiaceae em um remanescente de floresta atlântica no Rio Grande do Norte, Brasil. Natal; 2010. Dissertação de Mestrado [Programa de Pós-graduação em Ciências Biológicas] Universidade Federal do Rio Grande do Norte, UFRN, Natal; 2010.
  50. Pina EML, Araújo FWC, Souza IA, Bastos IVGA, Silva TG, Nascimento SC et al. Pharmacological screening and acute toxicity of bark roots of Guettarda platypoda. Rev Bras Farmacogn. 2012; 22(6): 1315-22. ISSN: 0102-695X. [https://doi.org/10.1590/S0102-695X2012005000118].
  51. Ferrari F, Messana I, Botta B, Mello JF. Constituents of Guettarda platypoda. J Nat Prod. 1986; 49(6): 1150-1. ISSN: 1520-6025. [https://doi.org/10.1021/np50048a041].
  52. Matos FJA. O formulário fitoterápico do professor Dias da Rocha. UFC Edições; 1997. ISBN: 8572820353.
  53. Bahia. Governo do Estado. Inventário de plantas medicinais do Estado da Bahia. Seplantec- Subsecretaria de Ciência e Tecnologia, 1979.
  54. Aquino R, De Simone F, Pizza C, Conti C, Stein ML. Plant metabolites. Structure and in vitro antiviral activity of quinovic acid glycosides from Uncaria tomentosa and Guettarda platypoda. J Nat Prod. 1989; 52(4): 679-85. ISSN: 1520-6025. [https://doi.org/10.1021/np50064a002].
  55. Herrera F, Manchester SR, Vélez-Juarbe J, Jaramillo C. Phytogeographic history of the humiriaceae (part 2). Int J Plant Sci. 2014; 175(7): 828–40. ISSN: 1058-5893. [https://doi.org/10.1086/676818].
  56. Lorenzi H, Matos FJA, Cavalleiro AS, Brochini VFG, Souza VC. Plantas medicinais no Brasil: nativas e exóticas. Nova Odessa: Jardim Botânico Plantarum. 2021. ISBN: 9786587655031.
  57. Dias EJS, Cantanhede Filho AJ, Carneiro FJC, Rocha CQ, Silva LCN, Santos JCB. Antimicrobial Activity of Extracts from the Humiria balsamifera (Aubl). Plants. 2021; 10(7): 1479. ISSN: 2223-7747. [https://doi.org/10.3390/plants10071479].
  58. BFG - The Brazil Flora Group. Brazilian Flora: innovation and collaboration to meet Target 1 of the Global Strategy for Plant Conservation (GSPC). Rodriguésia. 2020; 69(4): 1513-27. ISSN: 2175-7860. [https://doi.org/10.1590/2175-7860201869402].
  59. Balbach AA. Flora nacional na medicina doméstica. Edições Vida Plena, São Paulo; 2012.
  60. Coelho-Ferreira M. Medicinal knowledge and plant utilization in an Amazonian coastal community of Marudá, Pará state (Brazil). J Ethnopharmacol. 2009; 126(1): 159-75. ISSN: 0378-8741. [https://doi.org/10.1016/j.jep.2009.07.016].
  61. Couto JFO, Araújo MH, Muzitano MF, Leal ICR. Humiria balsamifera extract inhibits nitric oxide and tumor necrosis factor production in LPS-stimulated macrophages. Rodriguesia. 2021; 72. ISSN: 2175-7860. [https://doi.org/10.1590/2175-7860202172086].
  62. Matos JM, Costa ARC, Justino MN, Camara MBP, Vasconcelos OLS, Marques JC et al. Chemical prospection and antioxidant activity of Humiria balsamifera (Aubl.) A. St. Hil. and Hymenaea courbaril L. Nat Prod Res. 2024; 38(4): 614-18. ISSN: 1478-6419. [https://doi.org/10.1080/14786419.2023.2189708].
  63. Caddah MK, Mayer JLS, Bittrich V, Amaral MCE. Species limits in the Kielmeyera coriacea complex (Calophyllaceae) – a multidisciplinary approach. Bot J Linn Soc. 2012; 168(1): 101-15. ISSN: 0024-4074. [https://doi.org/10.1111/j.1095-8339.2011.01192.x].
  64. Cruz FG, Moreira LM, David JM, Guedes MLS, Chávez JP. Coumarins from Kielmeyera reticulata. Phytochemistry. 1998; 47(7): 1363–66. ISSN: 0031-9422. [https://doi.org/10.1016/S0031-9422(97)00767-X].
  65. Pinheiro L, Cortez DAG, Vidotti GJ, Young MCM, Ferreira AG. Estudo fitoquímico e avaliação da atividade moluscicida da Kielmeyera variabilis Mart. (Clusiaceae). Quim Nova. 2003; 26(2): 157-60. ISSN: 0100-4042. [https://doi.org/10.1590/S0100-40422003000200002].
  66. Boness HVM, Oliveira MS, Batista CSC, Almeida LS, Boffo EF, Villarreal CF et al. Anti-Inflammatory and Antinociceptive Properties of Kielmeyerone A, a Chromenone Isolated from the Roots of Kielmeyera reticulata. J Nat Prod. 2021; 84(8): 2157−64. ISSN: 1520-6025. [https://doi.org/10.1021/acs.jnatprod.1c00157].
  67. Souza VC, Lorenzi H. Botânica sistemática: guia ilustrado para identificação das famílias de Angiospermas da flora brasileira, baseado em APG II. Nova Odessa: Instituto Plantarum, 2005. ISSN: 8586714216.
  68. Ferrucci MS. Flora del Paraguay (Sapindaceae). In: Spichier Raven PH. (Ed.). Conservatoire et Jardin botaniques de la Ville de Genéve (Genéva). St. Louis: Missouri Botanical Garden, 1991.
  69. Somner GV, Ferrucci MS. Sapindaceae. In: Flora Fanerogâmica do Estado de São Paulo. (Wanderlay MGL, Shepherd GJ, Melhem TS, Giulietti & amp AM; Martins SE, eds.). Rima, São Paulo, 2009.
  70. De Mesquita ML, Grellier P, Mambu L, Paula JE, Espindola LS. In vitro antiplasmodial activity of Brazilian Cerrado plants used as traditional remedies. J Ethnopharmacol. 2007; 110(1): 165-70. ISSN: 0378-8741. [https://doi.org/10.1016/j.jep.2006.09.015].
  71. De Jesus GS, Micheletti AC, Padilha RG, Paula JS, Alves FM, Leal CRB et al. Antimicrobial potential of essential oils from cerrado plants against multidrug− resistant food borne microorganisms. Molecules. 2020; 25(14): 3296. ISSN: 1420-3049. [https://doi.org/10.3390/molecules25143296].
  72. Voutquenne L, Guinot P, Thoison O, Sevent T, Lavaud C. Oleanolic glycosides from Pometia ridleyi. Phytochemistry. 2003; 64(3): 781–9. ISSN: 0031-9422. [https://doi.org/10.1016/S0031-9422(03)00380-7].
  73. De Mesquita ML, Grellier P, Blond A, Brouard JP, Paula JE, Espindola LS, et al. New ether diglycosides from Matayba guianensis with antiplasmodial activity. Bioorg Med Chem. 2005; 13(14): 4499–4506. ISSN: 0968-0896. [https://doi.org/10.1016/j.bmc.2005.04.043].
  74. Zhang W, He Y, Yu Q, Liu HP, Wang DM, Li XB et al. Polyvalent effect enhances diglycosidic antiplasmodial activity. Eur J Med Chem. 2016; 121: 640-8. ISSN: 0223-5234. [https://doi.org/10.1016/j.ejmech.2016.05.069].
  75. Barroso GM, Peixoto AL, Ichaso CLF, Guimarães EF, Costa CG. Sistemática de Angiospermas do Brasil. Editora: UFV, Viçosa, MG. 1991. ISBN: 9788572691278. [acesso em: 28 fev. 2024]. Disponível em:
  76. [https://minerva.ufrj.br/F/?func=direct&doc_number=000695359&local_base=UFR01].
  77. Joly AB. Botânica: Introdução à Taxonomia Vegetal. Companhia Ed. Nacional, 2005. ISBN-13: 978-8504002317.
  78. Rizzini CT, Mors WB. Botânica Econômica Brasileira. Âmbito Cultural, Rio de Janeiro: Editora Pedagógica e Universitária, 1991. ISBN: 9788586742187.
  79. Horto Botânico. Swartzia apetala. Museu Nacional UFRJ, 2024. Disponível em: [https://lapid.museunacional.ufrj.br/hortobotanico/restinga/Swartziaapetala.html]. [acesso em: 26 fev. 2024].
  80. De Araújo MF, Vieira IJC, Braz-Filho R, Motta OV, Mathias L. Chemical constituents from Swartzia apetala Raddi var. glabra and evaluation of their antifungal activity against Candida spp. Rev Bras Farmacogn. 2009; 19(2a): 366-9. ISSN: 0102-695X. [https://doi.org/10.1590/S0102-695X2009000300005]
  81. De Araújo MF, Vieira IJC, Sant'Anna CMR, Silva DR, Maia AIV, Braz-Filho R, et al. New triterpene glycoside and other chemical constituents from the leaves of Swartzia apetala Raddi var. Glabra. Nat Prod Res. 2013; 27(20): 1888-95. ISSN: 1478-6419. [https://doi.org/10.1080/14786419.2013.782493].
  82. Almeida VM, Dias ER, Souza BC, Cruz JN, Santos CBR, Leite FHA et al. Methoxylated flavonols from Vellozia dasypus Seub ethyl acetate active myeloperoxidase extract: in vitro and in silico assays. J Biomol Struct Dyn. 2021; 40(16): 7574-83. ISSN: 1538-0254. [https://doi.org/10.1080/07391102.2021.1900916].
  83. Ayensu ES. Biological and morphological aspects of the velloziaceae. Biotropica. 1973; 5(3): 135-49. ISSN: 1744-7429. [https://doi.org/10.2307/2989806].
  84. De Souza CD, Felfili JM. The utilization of medicinal plants in the region of Alto Paraíso of Goiás, GO, Brazil. Acta Bot Bras. 2006; 20: 135–42. ISSN: 1677-941X. [https://doi.org/10.1590/S0102-33062006000100013].
  85. Leitão SG, Santos TC, Monache FD, Matheus ME, Fernandes PD, Marinho BG. Phytochemical profile and analgesic evaluation of Vitex cymosa leaf extracts. Rev Bras Farmacogn. 2011; 21(5): 874-83. ISSN: 0102-695X. [https://doi.org/10.1590/S0102-695X2011005000160].
  86. Dos Santos TC, Schripsemab J, Monache FD, Leitão SG. Iridoids from Vitex cymosa. J Braz Chem Soc. 2001; 12(6): 763-6. ISSN: 0103-5053. [https://doi.org/10.1590/S0103-50532001000600012].
  87. De Maris e Miranda LS, Marinho BG, Costa JS, Leitão SG, Santos TC, Monache FD et al. Structural determination Vitex cymosa Bertero active principle: Diastereoselective synthesis of (±)-trans-4-hydroxy-6-propyl-1-oxocyclohexan-2-one and its antinociceptive activity. Bioorg Chem. 2010; 38(5): 181-5. ISSN: 0045-2068. [https://doi.org/10.1016/j.bioorg.2010.05.001].
  88. Marinho BG, Miranda LSM, Costa JS, Leitão, SG, Vasconcellos MLAA, Pereira VLP et al. The antinociceptive properties of the novel compound (±)-trans-4- hydroxy-6-propyl-1-oxocyclohexan-2-one in acute pain in mice. Behav Pharmacol. 2013; 24(1): 10-9. ISSN: 0955-8810. [https://doi.org/10.1097/FBP.0b013e32835cf420].
  89. Dos Santos FB, Ramos MIL, Miyagusku L. Antimicrobial activity of hydroalcoholic extracts from genipap, baru and taruma. Ciênc Rural. 2017; 47(8): e20160252. E-ISSN 1678-4596. [https://doi.org/10.1590/0103-8478cr20160252].
  90. Guevara M, Silverio LAV, Albuja MGG, Iturralde G, Jaramillo-Vivanco T, Giampieri F et al. Pechiche (Vitex cymosa Berteo ex Speng), a Nontraditional Fruit from Ecuador, is a Dietary Source of Phenolic Acids and Nutrient Minerals, in Addition to Efficiently Counteracting the Oxidative-Induced Damage in Human Dermal Fibroblasts. Antioxidants. 2020; 9(2): 109. ISSN: 2076-3921. [https://doi.org/10.3390/antiox9020109].
  91. Ballard CR, Santos EF, Dubois MJ, Pilon G, Cazarin CBB, Maróstica Junior MR et al. Two polyphenol-rich Brazilian fruit extracts protect from diet-induced obesity and hepatic steatosis in mice. Food Funct. 2020; 11(10): 8800-10. ISSN: 2042-6496. [https://doi.org/10.1039/d0fo01912g].
  92. Rocha JHC, Cardoso MP, David JP, David JM. A novel chlorinated diphenyl ether from Byrsonima microphylla (Malpighiaceae). Biosci Biotechnol Biochem. 2006; 70(11): 2759-61. ISSN: 09168451. [https://doi.org/10.1271/bbb.60196].
  93. Gunstone FD, Subbarao R. New tropical seed oils. Part I. conjugated trienoic and tetraenoic acids and their oxo derivatives in the seed oils of Chrysobalanus icaco and Parinarium laurinum. Chem Physics Lipids. 1967; 1(4): 349-59. ISSN: 0009-3084. [https://doi.org/10.1016/0009-3084(67)90012-6].
  94. Barbosa WRL, Peres A, Gallori S, Vincieri FF. Determination of myricetin derivatives in Chrysobalanus icaco L. (Chrysobalanaceae). Rev Bras Farmacogn. 2006; 16(3): 333-7. ISSN: 0102-695X. [https://doi.org/10.1590/S0102-695X2006000300009].
  95. Vargas CE, Mendes MF, Azevedo DA, Pessoa FLP, Uller AC. Extraction of the essential oil of abajeru (Chrysobalanus icaco) using supercritical CO2. J Supercrit Fluids. 2010; 54(2): 171-7. ISSN: 0896-8446. [https://doi.org/10.1016/j.supflu.2009.12.007].
  96. Ribeiro NE, Pereira PS, Oliveira TB, Lima SMA, Silva TMS, Santana ALBD et al. Acute and repeated dose 28-day oral toxicity of Chrysobalanus icaco L. leaf aqueous extract. Regul Toxicol Pharmacol. 2020; 113: 104643. ISSN: 0273-2300. [https://doi.org/10.1016/j.yrtph.2020.104643].
  97. Brito ES, Araújo MCP, Alves RE, Carkeet C, Clevidence BA, Novotny JA. Anthocyanins Present in Selected Tropical Fruits: Acerola, Jambolão, Jussara, and Guajiru. J Agric Food Chem. 2007; 55: 9389–94. ISSN: 1520-5118. [https://doi.org/10.1021/jf0715020].
  98. El Babilli F, Moulis C, Bon M, Respaud MJ, Fourasté I. Three furano-diterpenes from the bark of Croton campestris. Phytochemistry. 1998; 48(1): 165-9. ISSN: 0031-9422. [https://doi.org/10.1016/S0031-9422(97)00701-2]
  99. Dos Santos PML, Schripsema J, Kuster RM. Flavonóides O-glicosilados de Croton campestris St. Hill. (Euphorbiaceae). Rev Bras Farmacogn. 2005; 15(4): 321-5. ISSN: 0102-695X. [https://doi.org/10.1590/S0102-695X2005000400011].
  100. Júnior FEB, Oliveira DR, Boligon AA, Athayde ML, Kamdem JP, Macedo GE et al. Protective effects of Croton campestris A. St-Hill in different ulcer models in rodents: Evidence for the involvement of nitric oxide and prostaglandins. J Ethnopharmacol. 2014; 153(2): 469-77. ISSN: 0378-8741. [https://doi.org/10.1016/j.jep.2014.03.005].
  101. Júnior FEB, Macedo GE, Zemolin AP, Silva GF, Cruz LC, Boligon AA et al. Oxidant effects and toxicity of Croton campestris in Drosophila melanogaster. Pharm Biol. 2016; 54(12): 3068-77. ISSN: 1388-0209. [https://doi.org/10.1080/13880209.2016.1207089].
  102. Aquino R, Simone F, Pizza C, Cerri R, Mello JF. Quinovic acid glycosides from Guettarda platypoda. Phytochemistry. 1988; 27(9): 2927-30. ISSN: 0031-9422. [https://doi.org/10.1016/0031-9422(88)80690-3].
  103. Aquino R, Simone F, Senatore F., Pizza C. Iridoids and secoiridoids from Guettarda platypoda. Pharmacol Res Commun. 1988; 20: 105-8. ISSN: 1879-2936. [https://doi.org/10.1016/s0031-6989(88)80852-x].
  104. Aquino R, Simone F, Pizza C, Mello JF. Further quinovic acid glycosides from Guettarda platypoda. Phytochemistry. 1989; 28(1): 199-1. ISSN: 0031-9422. [https://doi.org/10.1016/0031-9422(89)85037-X].
  105. Cruz FG, Moreira LM, Santos NAS, Guedes MLS. Additional Coumarins from Kielmeyera reticulata. J Braz Chem Soc. 2002; 13(5): 704-707. ISSN: 0103-5053. [https://doi.org/10.1590/S0103-50532002000500029].
  106. Lopes EM, Linhares RG, Pires LO, Castro RN, Souza GHMF, Koblitz MGB et al. Vanilla bahiana, a contribution from the Atlantic Forest biodiversity for the production of Vanilla: A proteomic approach through high-definition nanoLC/MS. Food Res Int. 2019; 120: 148-156. ISSN: 0963-9969. [https://doi.org/10.1016/j.foodres.2019.02.038].
  107. Silva FN, Vieira RF, Bizzo HR, Gama PE, Brumano CN, Vidigal MCTR et al. Chemical characterization and sensory potential of Brazilian vanilla species. Pesq Agropec Bras. 2003; 58(e03308). ISSN: 1678-3921. [https://doi.org/10.1590/S1678-3921.pab2023.v58.03308].
  108. Dos Santos TC, Monache FD, Leitão SG. Ecdysteroids from two Brazilian Vitex species. Fitoterapia. 2001; 72(3): 215-20. ISSN: 0367-326X. [https://doi.org/10.1016/s0367-326x(00)00304-x].
  109. Dos Santos TC, Schripsema J, Monache FD, Leitão SG. Iridoids from Vitex cymosa. J Braz Chem Soc. 2001; 12(6): 763-6. ISSN: 0103-5053. [https://doi.org/10.1590/S0103-50532001000600012].
  110. Leitão SG, Fonseca EN, Santos TC, França F, Monache FD. Caffeoylquinic acid derivatives from two Brazilian Vitex species. Biochem System Ecol. 2008; 36(4): 312-5. ISSN: 0305-1978. [https://doi.org/10.1016/j.bse.2007.09.004].
  111. Caridade TNS, Araújo RD, Oliveira ANA, Souza TSA, Ferreira NCF, Avelar DS et al. Chemical composition of four different species of the Waltheria genus. Biochem System Ecol. 2018; 80: 81-3. ISSN: 0305-1978. [https://doi.org/10.1016/j.bse.2018.07.003].
  112. Rodrigues NR, Oliveira ARS, Lima SMA, Nunes DM, Albuquerque PBS, Cunha MGC et al. Effect of the aqueous extract of Chrysobalanus icaco leaves on maternal reproductive outcomes and fetal development in wistar rats. Curr Issues Mol Biol. 2023; 45(9): 7617-29. ISSN: 1467-3037. [https://doi.org/10.3390/cimb45090479].
  113. Ferreira-Machado SC, Rodrigues MP, Nunes APM, Dantas FJS, Mattos JCP, Silva CR et al. Genotoxic potentiality of aqueous extract prepared from Chrysobalanus icaco L. leaves. Toxicol Lett. 2004; 151(3): 481-7. ISSN: 0378-4274. [https://doi.org/10.1016/j.toxlet.2004.03.014].
  114. Presta GA, Fonseca AS, Bernardo-Filho MA. Chrysobalanus icaco extract alters the plasmid topology and the effects of stannous chloride on the DNA of plasmids. Rev Bras Farmacogn. 2007; 17(3): 331-5. ISSN: 0102-695X. [https://doi.org/10.1590/S0102-695X2007000300005].

Autor(es)

Métricas

  • Artigo visto 131 vez(es)

Como Citar

1.
Espécies vegetais descritas em área de reserva da biosfera da Mata Atlântica como fonte para novos compostos bioativos. Rev Fitos [Internet]. 9º de outubro de 2024 [citado 23º de janeiro de 2025];18. Disponível em: https://revistafitos.far.fiocruz.br/index.php/revista-fitos/article/view/1731
Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Revista Fitos

Informe um erro
Deprecated: urlencode(): Passing null to parameter #1 ($string) of type string is deprecated in /sites/producao/revistafitos.far/revistafitos_3405/plugins/generic/coins/CoinsPlugin.php on line 131