Potential therapeutic effect of Moringa oleifera Lamarck (Moringaceae) leaves: a revision of its role in glycemic control in vivo studies

Francker Duarte de Castro
OrcID
Larissa Marina Pereira Silva
OrcID
Renata Borges de Oliveira
OrcID
Silvana Maria Zucolotto
OrcID

    Francker Duarte de Castro

    Federal University of Rio Grande do Norte (UFRN), Health Sciences Center, Department of Pharmacy, Av. General Cordeiro de Farias, s/n, Petrópolis, CEP 59012-570, Natal, RN, Brazil.

    OrcID https://orcid.org/0000-0001-8173-1654

    Master in Development and Environment (PRODEMA) from the Federal University of Rio Grande do Norte (UFRN). Bachelor in Pharmacy (UFRN) and Degree in Geography from the Federal Institute of Education, Science and Technology of Rio Grande do Norte (IFRN). He is currently a professor at the State Public Education Network of Rio Grande do Norte. Its study topics include: Pharmacognosy, medicinal plants, environmental perception, environmental issues, artisanal fishing, and cultural geography.

    Larissa Marina Pereira Silva

    Federal University of Rio Grande do Norte (UFRN), Health Sciences Center, Department of Pharmacy, Av. General Cordeiro de Farias, s/n, Petrópolis, CEP 59012-570, Natal, RN, Brazil.

    OrcID https://orcid.org/0000-0002-7480-1412

    Visiting Scholar no Plants for Human Health Institute, North Carolina State University, NC, EUA. Doctoral student in Development and Technological Innovation in Medicines (UFRN, 2018). Master in Pharmaceutical Sciences by the Pharmaceutical Sciences program at the Federal University of Rio Grande do Norte (UFRN, 2017). Graduated in Pharmacy from UFRN (2014). She worked as a Scientific Initiation student and monitor in Medicines Quality Control, with the LCQMed team under the guidance of Professor Dr. Cícero Flávio Aragão (2013). She has professional experience in the Commercial/Community Pharmacy area (UniFarma and Santa Fé Drugstore Networks, 2013-2014). She did an internship in the area of ​​Biochemical Analysis (PAPI, 2014). Intern at the Food and Drug Research Center - (NUPLAM, 2013). She worked at NUPLAM (2016-2017). She participated in the organization of the event: ''Safe and rational use of medicinal plants and phytotherapics: guidance for future professionals in the health area'', together with the PNBio team, under the coordination of Professor Dr. Silvana Maria Zucolotto Langassner (2016). She held a teaching internship in the Pharmacy Graduation course (UFRN), teaching a class with the theme ''Phenolic Compounds'' (2017). She has research experience with classical chromatography and chromatographic techniques such as

     

    HPLC-DAD, CLUE-DAD and LC-MS; development of analytical methodologies; pharmacological evaluation in vivo (nociceptive and anti-inflammatory) of synthetic compounds and in vitro (anthelmintic and anti-fungal) of plant derivatives; elucidation and structural characterization by NMR and MS of substances of natural origin. She acted as Substitute Professor in the Pharmacognosy discipline-UFRN (2018-2019). She is interested in research, mainly related to the prospection of natural products and chromatographic techniques. She intends to pursue an academic career, seeking to apply active methodologies such as the OSCE (Organization for Security and Co-operation in Europe) that encourage students to pursue active learning.

    Renata Borges de Oliveira

    Federal University of Rio Grande do Norte (UFRN), Health Sciences Center, Department of Pharmacy, Av. General Cordeiro de Farias, s/n, Petrópolis, CEP 59012-570, Natal, RN, Brazil.

    OrcID https://orcid.org/0000-0001-6655-205X

    Graduating in Pharmacy at UFRN, she is part of the Research Group on Bioactive Natural Products (GPNBio) as a Scientific Initiation Scholar, where she evaluates the antiviral activity of free and nanoencapsulated extracts of Spondias mombin. Participates in the Group of Studies and Practices in Pharmaceutical Assistance (GEPRAF), working on the project Development and validation of a clinical questionnaire to assess the predisposition to adherence to immunosuppressive treatment in kidney transplant patients, performed in 6 transplant centers and 5 dialysis clinics in the northeast Brazilian. Currently, she is a monitor in the Applied Pharmacology and Pharmaceutical Care disciplines. She is interested in research, bioactive natural products, pharmaceutical care, pharmacology and pharmaceutical care.

    Silvana Maria Zucolotto

    Federal University of Rio Grande do Norte (UFRN), Health Sciences Center, Department of Pharmacy, Av. General Cordeiro de Farias, s/n, Petrópolis, CEP 59012-570, Natal, RN, Brazil.

    OrcID https://orcid.org/0000-0002-2768-0793

    He holds a degree in Pharmacy from the Federal University of Santa Catarina (UFSC) (2003), a master's degree (2005) and a doctorate (2009) in Pharmacy from the UFSC, with a sandwich period at the Universidad Nacional de Colombia (UNAL). He is currently Associate Professor at the Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN). Permanent member of the Graduate Programs in Pharmaceutical Sciences, Graduate Program in Health Sciences and Graduate Program in Development and Technological Innovation in Medicines. He has been a CNPq Research Productivity Scholar 2 since March 2021. He develops Research Projects in the area of ​​Pharmacognosy / Natural Products and advises Scientific Initiation, Master's and Doctoral students, in addition to Postdoctoral supervision. He coordinates the Research Group on Bioactive Natural Products (PNBio). He has experience in Pharmacy, with emphasis on Chemical investigation of natural products, working mainly on the following subjects: Passiflora and Kalanchoe species; plant species of interest to the SUS and occurring in the Northeast region of Brazil; development and validation of analytical methodologies for the determination of markers, flavonoids and phytotherapics. Founder of the Instagram profile @fitoterapia.com.ciencia. She was on maternity leave from November 2010 to May 2011 and from May to November 2013. She is currently doing postdoctoral work at the Plants for Human Health Institute at North Carolina State University (NCSU)-Kannapolis, US.


Keywords

Moringa
Toxicity
Antioxidant
Antihyperglycemic
Diabetes

Abstract

Moringa oleifera Lamarck (Moringaceae) has been highlighted in Brazil due to its high nutritional content and is widely used in food supplementation. Lately, many studies have been published about its actions in the treatment of diabetes mellitus and in several other properties, such as antioxidant, tissue protector and antihypertensive and immunomodulator effect. However, its growing irrational use by the population has triggered the prohibition of its use and commercialization of products in Brazil by the National Health Surveillance Agency (ANVISA). In this context, this study aimed to conduct a literature review to assess the potential antidiabetic action of M. oleifera leaves. For this purpose, 43 non-clinical studies (12 - in vitro; 31 - in vivo) were analyzed. The studies analyzed pointed to a promising antidiabetic activity. However, the lack of methodological standardization of the process and chemical characterization of products added to some methodological biases in studies weakened the scientific evidence on their efficacy, and the understanding of their mechanism of action.

References

  1. Veiga Júnior VF, Pinto AC, Maciel MAM. Plantas medicinais: cura segura? Quim Nova. 2005; 28(3): 519-528. ISSN 0100-4042. [https://doi.org/10.1590/S0100-40422005000300026].
  2. Khan H. Medicinal plants in light of history: recognized therapeutic modality. Evid Based Compl Altern Med. 2014; 19(3): 216-219. ISSN 1741-427X. [https://doi.org/10.1177%2F2156587214533346].
  3. Raskin I, Ripoll C. Can an apple a day keep the doctor away?. Curr Pharm Des. 2004; 10: 3419-3429. ISSN 1381-6128. [https://doi.org/10.2174/1381612043383070].
  4. Le Couteur P, Burreson J. Os botões de Napoleão: as 17 moléculas que mudaram a história. Rio de Janeiro: Zahar, 2006. ISBN 9788571109247.
  5. Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020. 83(3): 770-803. ISSN 1520-6025. [https://doi.org/10.1021/acs.jnatprod.9b01285].
  6. Ma ZF, Ahmad J, Zhang H, Khan I, Muhammad S. Evaluation of phytochemical and medicinal properties of Moringa (Moringa oleifera) as a potential functional food. S Afr J Bot. 2020; 129: 40-46. ISSN 0254-6299. [https://doi.org/10.1016/j.sajb.2018.12.002].
  7. Anwar F, Latif S, Ashraf M, Gilani AH. Moringa oleifera: a food plant with multiple medicinal uses. Phytother Res. 2007; 21: 17-25. ISSN 1099-1573. [https://doi.org/10.1002/ptr.2023].
  8. Zaku SG, Emmanuel S. Tukur AA, Kabir A. Moringa oleifera: an underutilized tree in Nigeria with amazing versatility: a review. Afr J Food Sci. 2015; 9(9): 456-461. ISSN 1996-0794. [https://doi.org/10.5897/AJFS2015.1346] [https://academicjournals.org/journal/AJFS/article-full-text-pdf/85D538355442].
  9. Barichella M et al. Nutritional characterisation of Zambian Moringa oleifera: acceptability and safety of short-term daily supplementation in a group of malnourished girls. Int J Food Sci Nutr. 2018; 70(1): 107-115. ISSN 0963-7486. [https://doi.org/10.1080/09637486.2018.1475550].
  10. Moyo B, Masika PJ, Mar LJ, Hugo A, Muchenje V. Nutritional characterization of Moringa (Moringa oleifera Lam.) leaves. Afr J Biotechnol. 2011; 10(60): 12925-12933. ISSN 1684-5315. [https://doi.org/10.5897/AJB10.1599].
  11. Leone A, Spada A, Battezzati A, Schiraldi A, Aristil J, Bertoli S. Cultivation, genetic, ethnopharmacology, phytochemistry and pharmacology of Moringa oleifera leaves: an overview. Int J Mol Sci. 2015; 16: 12791-12835. ISSN 1422-0067. [https://doi.org/10.3390/ijms160612791].
  12. Gopalakrishnan L, Doryia K, Kumar DS. Moringa oleifera: a review on nutritive importance and its medicinal application. Food Sci Human Wellness. 2016; 5(2): 49-56. ISSN 2213-4530. [https://doi.org/10.1016/j.fshw.2016.04.001].
  13. Gandji K, Chadare FJ, Idohou R, Salako VK, Assogbadjo AE, Kakai RLG. Status and utilization of Moringa oleifera Lam: a review. Afr Crop Sci J. 2018; 26(1): 137-156. ISSN 1021-9730. [https://doi.org/10.4314/acsj.v26i1.10]
  14. Jaiswal D, Rai PK, Kumar A, Mehta S, Watal G. Effect of Moringa oleifera Lam. leaves aqueous extract therapy on hyperglycemic rats. J Ethnopharmacol. 2009; 123: 392-396. ISSN 0378-8741. [https://doi.org/10.1016/j.jep.2009.03.036]
  15. Lin M, Zhang J, Chen X. Bioactive flavonoids in Moringa oleifera and their health-promoting properties. J. Funct. Foods. 2018; 47: 469-479. ISSN 1756-4646. [https://doi.org/10.1016/j.jff.2018.06.011].
  16. Rangel MS. Moringa oleifera: um purificador natural de água e complemento alimentar para o nordeste do Brasil. 2007. Disponível em: [http://www.jardimdeflores.com.br/floresefolhas/A10moringa.htm]. Acesso em: 25 fev. 2020.
  17. Silva GV, Souto JS, Santos JB. Cultivo de moringa: importância nutricional, uso e aplicações. Meio Ambiente (Brasil). 2019. 1(3): 23-32. ISSN 2675-3065. Disponível em: [https://meioambientebrasil.com.br/index.php/MABRA/article/view/38/36]. Acesso em: 22 mai. 2020.
  18. Brasil. Agência Nacional de Vigilância Sanitária, ANVISA. RDC n° 26, de 13 de maio de 2014. Dispõe sobre o registro de medicamentos fitoterápicos e o registro e a notificação de produtos tradicionais fitoterápicos. Diário Oficial da União, Poder Executivo, Brasília, 14 mai. 2014. Disponível em: [http://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2014/rdc0026_13_05_2014.pdf]. Acesso em: 30 jul. 2019.
  19. Carvalho ACB, Lana TN, Perfeito JPS, Silveira D. The brazilian market of herbal medicinal products and the impact of the new legislation on traditional medicines. J Ethnopharmacol. 2018; 212: 29-35. ISSN 0378-8741. [https://doi.org/10.1016/j.jep.2017.09.040]
  20. Brasil. Agência Nacional de Vigilância Sanitária, ANVISA. RDC n° 243, de 26 de julho de 2018. Dispõe sobre os requisitos sanitários dos suplementos alimentares. Diário Oficial da União, Poder Executivo, Brasília, 27 jul. 2018. Disponível em: [http://www.in.gov.br/materia/-/asset_publisher/Kujrw0TZC2Mb/content/id/34379969/]. Acesso em: 30 jul. 2019.
  21. Brasil. Agência Nacional de Vigilância Sanitária, ANVISA. Resolução-RE n° 1.478 de 03 de junho de 2019. Diário Oficial da União, Poder Executivo, Brasília, 04 jun. 2019. Disponível em: [https://crn7.org/index.php/ultimas-noticias/336-resolucao-re-n-1-478-de-3-de-junho-de-2019]. Acesso em: 11 ago. 2019.
  22. Sociedade Brasileira de Diabetes (SBD). Diretrizes Sociedade Brasileira de Diabetes 2019-2020. São Paulo: Editora Clannad, 2019. 491p. Disponível em: [https://www.diabetes.org.br/profissionais/images/DIRETRIZES-COMPLETA-2019-2020.pdf]. Acesso em: 15 ago. 2019.
  23. Artasensi A, Pedretti A, Vistoli G, Fumagalli L. Type 2 Diabetes Mellitus: a Review of Multi-Target drugs. Molecules. 2020; 25(8): 1-20. ISSN 1420-3049. [https://doi.org/10.3390/molecules25081987].
  24. Mbikay M. Therapeutic potential of Moringa oleifera leave in chronic hyperglycemia and dyslipidemia: a review. Front. Pharmacol. 2012; 3(1): 1-12. ISSN 1663-9812. [https://doi.org/10.3389/fphar.2012.00024].
  25. Padayachee B, Baijnath H. An overview of the medicinal importance of Moringaceae. J Med Plants Res. 2012; 6(48): 5831-5839. ISSN 1996-0875. [https://academicjournals.org/journal/JMPR/article-full-text-pdf/BA35BA323431].
  26. Shahzad U, Khan MA, Jaskani JM, Khan IA, Korban SS. Genetic diversity and population structure of Moringa oleifera. Conserv. Genet. 2013; 11: 1161-1172. ISSN 1566-0621. [https://doi.org/10.1007/s10592-013-0503-x].
  27. The Plant List. (2020). Version 1.1. Disponível em: [http://www.theplantlist.org/tpl1.1/record/tro-21400003]. Acesso em: 26 mar. 2019.
  28. Ramachandran C, Peter KV, Gapalakrishnan PK. Drumstick (Moringa oleifera): a multipurpose indian vegetable. Econ Bot. 1980; 34(3): 276-283. ISSN 0013-0001. [https://doi.org/10.1007/BF02858648].
  29. Alegbeleye O.O. How Functional Is Moringa oleifera? A review of its nutritive, medicinal, and socioeconomic potential. Food Nutr Bull. 2017; 39(1): 149-170. ISSN 0379-5721. [https://doi.org/10.11772F0379572117749814].
  30. Nouman W, Basra SMA, Siddiqui MT, Yasmeen A, Gull T, Alcayde MAC. Potential of Moringa oleifera L. as livestock fodder crop: a review. Turk J Agric For. 2014; 38: 1-14. ISSN 1300-011X. [https://doi.org/10.3906/tar-1211-66].
  31. Santos ARF. Desenvolvimento Inicial de Moringa oleifera Lam. sob condições de estresse. São Cristóvão; 2010. Dissertação de Mestrado [Programa de Pós-Graduação e Estudos em Recursos Naturais] - Universidade Federal de Sergipe, UFS. São Cristóvão; 2010. Disponível em: [http://livros01.livrosgratis.com.br/cp134670.pdf]. Acesso em: 06 mar. 2020.
  32. Seshadri S, Nambiar VS. Kanjero (Digera arvensis) and Drumstick Leaves (Moringa oleifera): Nutrient Profile and Potential for Human Consumption. In: Simopoulos AP, Gopalan C. World Review of Nutrition and Dietetics. Karger Medical and Scientific Publishers: Basel; 2003, v. 91: 41-59. [https://doi.org/10.1159/000069927].
  33. Gupta S, Jain R, Kachhwaha S, Kothari SL. Nutritional and medicinal applications of Moringa oleifera Lam.: review of current status and future possibilities. J Herb Med. 2018; 11: 1-11. ISSN 2210-8033. [https://doi.org/10.1016/j.hermed.2017.07.003].
  34. Panda DS, Ansari SA. Preformulation study on the gum of Moringa oleifera. Malays. J. Pharm. Sci. 2013; 11(2): 41-47. ISSN 1675-7319. [http://web.usm.my/mjps/mjps11022013/mjps11022013_5.pdf].
  35. Fahey JW. Moringa oleifera: A review of the medical evidence for its nutritional, therapeutic, and prophylactic properties. Part 1. Trees Life J. 2005; 1(5): 1-15. ISSN 1559-1891. [https://doi.org/10.1201/9781420039078.ch12].
  36. Mahmood KT, Mugal T, Haq IU. Moringa oleifera: a natural gift- a review. J Pharm Sci Res. 2010; 2(11): 775-781. ISSN 0975-1459. [https://pdfs.semanticscholar.org/9438/104f5f3da8ba1ae394e8f07118adcd25af07.pdf].
  37. Pandey A, Pandey RD, Tripathi P, Gupta PP, Haider J, Bhatt S et al. Moringa oleifera Lam. (Sahijan) - A plant with a plethora of diverse therapeutic benefits: an updated retrospection. Med Arom Pl. 2012; 1(1): 2-8. ISSN 2167-0412. [https://doi.org/10.4172/map.1000101].
  38. Muhammad HI, Asmawi MZ, Khan NAK. A review on promising phytochemical, nutritional and glycemic control studies on Moringa oleifera Lam. in tropical and sub-tropical regions. Asian Pac J Trop Biomed. 2016; 6(10): 896-902. ISSN 2588-9222. [https://doi.org/10.1016/j.apjtb.2016.08.006].
  39. Vergara-Jimenez M, Almatrafi MM, Fernandez ML. Bioactive components in Moringa oleifera Leaves Protect against Chronic Disease. Antioxidants. 2017; 6(91): 1-13. ISSN 2076-3921. [https://doi.org/10.3390/antiox6040091].
  40. Prabu M, Kumuthakalavalli R. Folk remedies of medicinal plants for snake bites, scorpions stings and dog bites in eastern Ghats of Kolli Hills, Tamil Nadu, India. IJRAP. 2012. 3(5): 696-700. ISSN 2229-3566. [https://doi.org/10.7897/2277-4343.03523].
  41. Papoola JC, Obembe OO. Local knowledge, use pattern and geographical distribution of Moringa oleifera Lam. (Moringaceae) in Nigeria. J Ethnopharmacol. 2013; 150: 682-691. ISSN 0378-8741. [https://doi.org/10.1016/j.jep.2013.09.043]
  42. Patel S, Thakur AS, Chandy A, Manigauha A. Moringa oleifera: a review of the medicinal and economic importance to the health and nation. Drug Invent Today. 2010. 2(7): 339-342. ISSN 0975-7619. [https://www.researchgate.net/publication/285761492].
  43. Ahmad J, Khan I, Blundell R. Moringa oleifera and glycemic control: A review of current evidence and possible mechanisms. Phytother Res. 2019; 33(11): 2841-2848. ISSN 1099-1573. [https://doi.org/10.1002/ptr.6473].
  44. Vargas-Sánchez K, Jaramillo EG, Reyes REG. Effects of Moringa oleifera on glycaemia and insulin levels: a review of animal and human studies. Nutrients. 2019. 11: 1-19. ISSN 2072-6643. [https://doi.org/10.3390/nu11122907].
  45. Owens IFS, Dada O, Cyrus JW, Adedoyin OO, Adunlin G. The effects of Moringa oleifera on blood glucose levels: A scoping review of the literature. Complement Ther Med. 2020. 50: 1-8. ISSN 0965-2299. [https://doi.org/10.1016/j.ctim.2020.102362].
  46. Ndong M, Uehara M, Katsumata S, Suzuki K. Effects of oral administration of Moringa oleifera Lam on glucose tolerance in Goto-Kakizaki and Wistar rats. J Clin Biochem Nutr. 2007; 40(3): 229-233. ISSN 1880-5086. [https://doi.org/10.3164/jcbn.40.229].
  47. El-Badawi AY, EL-Wardany I, Abedo AA, Omer HAA. Haematological, blood biochemical constituents and histopathological responses of growing rabbits fed different levels of moringa leaves. Int J Chemtech Res. 2016; 9(4): 1011-1021. ISSN 0974-4290. [https://www.researchgate.net/publication/331821866].
  48. Parwani L, Bohra Y, Gupta S, Kumar R. Effect of temperature on α-glucosidase, lipase inhibition activity and other nutritional properties of Moringa oleifera leaves: intended to be used as daily antidiabetic therapeutic food. J. Food Nutr Res. 2016; 55(1): 69-77. ISSN 1336-8672. [https://www.researchgate.net/publication/296585083].
  49. López M, Ríos-Silva M, Huerta M, Cárdenas Y, Bricio-Barrios JA, Díaz-Reval MI et al. Effects of Moringa oleifera leaf powder on metabolic syndrome induced in male Wistar rats: a preliminary study. J. Int. Med. Res. 2018; 46(8): 3327-3336. ISSN: 0300-0605. [https://doi.org/10.1177%2F0300060518781726].
  50. Villarruel-López A, López-de la Mora DA, Vazquéz-Paulino OD, Puebla-Mora AG, Torres-Vitela MR, Guerrero-Quiroz LA et al. Effect of Moringa oleifera consumption on diabetics rats. BMC Compl Altern Med. 2018; 18(127): 01-10. ISSN 2662-7671-0605. [https://doi.org/10.1186/s12906-018-2180-2].
  51. Momoh MA, Chime AS, Kenechukwu FC. Novel drug delivery system of plant extract for the management of diabetes: an antidiabetic study. J Diet Suppl. 2013; 10(3): 252-263. ISSN 1939-0211. [https://doi.org/10.3109/19390211.2013.822454].
  52. Adisakwattana S, Chanathong B. Alpha-glucosidase inhibitory activity and lipid-lowering mechanisms of Moringa oleifera leaf extract. Eur Rev Med Pharmacol Sci. 2011; 15: 803-808. ISSN 2284-0729. [https://www.researchgate.net/publication/51512950].
  53. Jimoh TO. Enzymes inhibitory and radical scavenging potentials of two selected tropical vegetable (Moringa oleifera and Telfairia occidentalis) leaves relevant to type 2 diabetes mellitus. Rev Bras Farmacogn. 2018; 28: 73-79. ISSN 0102-695x. [https://doi.org/10.1016/j.bjp.2017.04.003].
  54. Chen C, Zhang B, Huang Q, Fu X, Liu RH. Microwave-assisted extraction of polysaccharides from Moringa oleifera Lam. leaves: characterization and hypoglycemic activity. Ind Crops Prod. 2017; 100: 1-11. ISSN 0926-6690. [https://doi.org/10.1016/j.indcrop.2017.01.042].
  55. Sangkitikomol W, Rocejanasaroj A, Tencomnao T. Effect of Moringa oleifera on advanced glycation end-product formation and lipid metabolism gene expression in HepG2 cells. Genet Mol Res. 2014; 13(1): 723-735. ISSN 1676-5680. [https://doi.org/10.4238/2014.January.29.3].
  56. Nunthanawanich P, Sompong W, Sirikwanpong S, Mäkynen K, Adisakwattana S, Dahlan W et al. Moringa oleifera aqueous leaf extract inhibits reducing monosaccharide-induced protein glycation and oxidation of bovine serum albumin. Springerplus. 2016; 5: 01-07. ISSN 2193-1801. [https://doi.org/10.1186/s40064-016-2759-3].
  57. Adepoju-Bello AA, Jolayemi OM, Ehianeta TS, Ayoola GA. Preliminary phytochemical screening, antioxidant and antihyperglycaemic activity of Moringa oleifera leaf extracts. Pak J Pharm Sci. 2017; 30(6): 2217-2222. ISSN 1011-601X. [https://www.researchgate.net/publication/320551944].
  58. Verma AR, Vijayakumar M, Mathela CS, Rao CV. In vitro and in vivo antioxidant properties of different fractions of Moringa oleifera leaves. Food Chem Toxicol. 2009; 47: 2196-2201. ISSN 0278-6915. [https://doi.org/10.1016/j.fct.2009.06.005].
  59. Uma N, Fakurazi S, Hairuszah I. Moringa oleifera enhances liver antioxidant status via elevation of antioxidant enzymes activity and counteracts paracetamol-induced hepatotoxicity. Malays J Nutr. 2010; 16(2): 293-307. ISSN 1394-035X. [https://www.researchgate.net/publication/225300446].
  60. Moyo B, Oyedemi S, Masika PJ, Muchenje V. Polyphenolic content and antioxidant properties of Moringa oleifera leaf extracts and enzymatic activity of liver from goats supplemented with Moringa oleifera leaves/sunflower seed cake. Meat Sci. 2012; 91: 441-447. ISSN 0309-1740. [https://doi.org/10.1016/j.meatsci.2012.02.029].
  61. Chumark P, Khunawat P, Sanvarinda Y, Phornchirasilp S, Morales NP, Phivthong-ngam L et al. The in vitro and ex vivo antioxidant properties, hypolipidemic and antiatherosclerotic activities of water extract of Moringa oleifera Lam. leaves. J Ethnopharmacol. 2008; 116: 439-446. ISSN 0378-8741. [https://doi.org/10.1016/j.jep.2007.12.010].
  62. Jaiswal D, Rai PK, Mehta S, Chatterji S, Shukla S, Rai DK et al. Role of Moringa oleifera in regulation of diabetes-induced oxidative stress. Asian Pac J Trop Med. 2013; 6(6): 426-432. ISSN 1995-7645. [https://doi.org/10.1016/S1995-7645(13)60068-1].
  63. Tshabalala T, Ndhlala AR, Ncube B, Abdelgadir HA, Van Staden J. Potential substitution of the root with the leaf in the use of Moringa oleifera for antimicrobial, antidiabetic and antioxidant properties. S Afr J Bot. 2019; 1-7. ISSN 0254-6299. [https://doi.org/10.1016/j.sajb.2019.01.029].
  64. Magaji UF, Sacan O, Yanardag R. Alpha amylase, alpha glucosidase and glycation inhibitory activity of Moringa oleifera extracts. S Afr J Bot. 2020; 128: 225-230. ISSN 0254-6299. [https://doi.org/10.1016/j.sajb.2019.11.024].
  65. Coppin JP, Xu YP, Chen H, Pan MH, Ho CT, Juliani Ret et al. Determination of flavonoids by LC/MS and anti-inflammatory activity in Moringa oleifera. J. Funct Foods. 2013; 5: 1892-1899. ISSN 1756-4646. [https://doi.org/10.1016/j.jff.2013.09.010].
  66. Rodríguez‐Pérez C, Gilbert‐López B, Mendiola JA, Quirantes-Piné R, Segura‐Carretero A, Ibáñez E. Optimization of microwave-assisted extraction and pressurized liquid extraction of phenolic compounds from Moringa oleifera leaves by multiresponse surface methodology. Electrophoresis. 2016; 37(13): 1938-1946. ISSN 1522-2683. [https://doi.org/10.1002/elps.201600071].
  67. Finkel T, Holbrook, NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000; 408: 239-247. ISSN 0028-0836. [https://doi.org/10.1038/35041687].
  68. Pojer E, Mattivi F, Johnson D, Stockley CS. The case for anthocyanin consumption to promote human health: a review. Compr Rev Food Sci Food Saf. 2013; 12: 483-508. ISSN 1541-4337. [https://doi.org/10.1111/1541-4337.12024].
  69. Azad SB, Ansari P, Azam S, Hossain SM, Shahid MI, Hasan M et al. Anti-hyperglycaemic activity of Moringa oleifera is partly mediated by carbohydrase inhibition and glucose-fibre binding. Biosci Rep. 2017; 37: 1-11. ISSN 1573-4935. [https://doi.org/10.1042/BSR20170059].
  70. Natsir H, Wahab AW, Laga A, Arif AR. Inhibitory activities of Moringa oleifera leaf extract against α-glucosidase enzyme in vitro. J Phys Conf Ser. 2018; 979: 1-6. ISSN 1742-6596. [https://iopscience.iop.org/article/10.1088/1742-6596/979/1/012019].
  71. Tang Y, Choi EJ, Han WC, Oh M, Kim J, Hwang JY et al. Moringa oleifera from Cambodia Ameliorates Oxidative Stress, Hyperglycemia, and Kidney Dysfunction in Type 2 Diabetic Mice. J Med Food. 2017; 20(5): 502-510. ISSN 1096-620X. [https://doi.org/10.1089/jmf.2016.3792].
  72. Olayaki LA, Irekpita JE, Yakubu MT, Ojo OO. Methanolic extract of Moringa oleifera leaves improves glucose tolerance, glycogen synthesis and lipid metabolismo metabolismo in alloxan-induced diabetic rats. J Basic Clin Physiol Pharmacol. 2015; 26(6): 585-593. ISSN 2191-0286. [https://doi.org/10.1515/jbcpp-2014-0129].
  73. Attakpa ES, Sangaré MM, Béhanzin GJ, Ategbo JM, Seri B, Khan NA. Moringa oleifera Lam. stimulates activation of the insulin-dependent akt pathway antidiabetic effect in a Diet-Induced Obesity (DIO) mouse model. Folia Biol. 2017; 63: 42-51. ISSN 0015-5500. [https://fb.cuni.cz/file/5837/fb2017a0008.pdf].
  74. Latif AAE, Bialy BESE, Mahboub HD, Eldaim MAA. Moringa oleifera leaf extract ameliorates alloxan-induced diabetes in rats by regeneration of cells and reduction of pyruvate carboxylase expression. Biochem Cell Biol. 2014; 92(5): 1-7. ISSN 0829-8211. [https://doi.org/10.1139/bcb-2014-0081].
  75. Yassa HD, Tohamy AF. Extract of Moringa oleifera leaves ameliorates streptozotocin-induced Diabetes mellitus in adult rats. Acta Histochem. 2014; 116(5): 844-854. ISSN 0065-1281. [https://doi.org/10.1016/j.acthis.2014.02.002].
  76. Bamagous GA, Al Ghamdi SS, Ibrahim IAA, Mahfoz AM, Afify MA, Alsugoor MHM et al. Antidiabetic and antioxidant activity of ethyl acetate extract fraction of Moringa oleifera leaves in streptozotocin-induced diabetes rats via inhibition of inflammatory mediators. Asian Pac J Trop Biomed. 2018; 8 (6): 320-327. ISSN 2221-1691. [https://doi.org/10.4103/2221-1691.235327].
  77. Aju BY, Rajalakshmi R, Mini S. Protective role of Moringa oleifera leaf extract on cardiac antioxidant status and lipid peroxidation in streptozotocin induced diabetic rats. Helyion. 2020; 6: 1-7. ISSN 2405-8440. [https://doi.org/10.1016/j.heliyon.2019.e02935].
  78. Irfan HM, Asmawi MZ, Khan NAK, Sadikun A, Mordi MN. Anti-diabetic activity-guided screening of aqueous-ethanol Moringa oleifera extracts and fractions: identification of marker compounds. Trop J Pharm Res. 2017; 16(3): 543-552. ISSN 1596-5996. [https://doi.org/10.4314/tjpr.v16i3.7].
  79. Waterman C, Rojas-Silva P, Tumer TB, Kuhn P, Richard AJ, Wicks S et al. Isothiocyanate-rich Moringa oleifera extract reduces weight gain, insulin resistance and hepatic gluconeogenesis in mice. Mol Nutr Food Res. 2015; 59 (6): 1003-1024. ISSN 1613-4133. [https://doi.org/10.1002/mnfr.201400679].
  80. Ara N, Rashid M, Amran S. Comparison of Moringa oleifera leaves extract with Atenolol on serum triglyceride, serum cholesterol, blood glucose, heart weight, body weight in adrenaline induced rats. Saudi J Biol Sci. 2008; 15 (2): 253-258. ISSN 1319-562X. [http://www.columbusmoringa.com/wp-content/uploads/2014/03/].
  81. Divi SM, Bellamkonda R, Dasireddy SK. Evaluation of antidiabetic and antihyperlipedemic potential of aqueous extract of Moringa oleifera in fructose fed insulin resistant and stz induced diabetic wistar rats: a comparative study. Asian J Pharm Clin Res. 2012; 5 (1): 67-72. ISSN 0974-2441. [https://pdfs.semanticscholar.org/ddaf/d1c294d57f34e9791f89927d5d6c213f9e12.pdf].
  82. Omabe M, Nwudele B, Omabe KN, Okorocha AE. Anion Gap Toxicity in alloxan induced type 2 diabetic rats treated with antidiabetic noncytotoxic bioactive compounds of ethanolic extract of Moringa oleifera. J Toxicol. 2014; 1-7. ISSN 1687-8191. [https://doi.org/10.1155/2014/406242].
  83. Oseni OA, Idowu ASK. Inhibitory activity of Aqueous extracts of Horseradiash Moringa oleifera (Lam.) and Nutmeg Myristica fragrans (Houtt) on Oxidative Stress in Alloxan induced Diabetic Male Wistar Albino Rats. Am J Biochem Mol Biol. 2014; 4 (2): 64-75. ISSN 2150-4210. [https://doi.org/10.3923/ajbmb.2014.64.75].
  84. Irfan HM, Asmawi MZ, Khan NAK, Sadikun A. Effect of ethanolic extract of Moringa oleifera Lam. leaves on body weight and hyperglycemia of diabetic rats. Pak J Nutr. 2016; 15 (2): 112-117. ISSN 1680-5194. [https://doi.org/10.3923/pjn.2016.112.117].
  85. Olurishe C, Kwanashie H, Zezi A, Danjuma N, Mohammed B. Chronic administration of ethanol leaf extract of Moringa oleifera Lam. (Moringaceae) may compromise glycaemic efficacy of Sitagliptin with no significant effect in retinopathy in a diabetic rat model. J Ethnopharmacol. 2016; 194: 895-903. ISSN 0378-8741. [https://doi.org/10.1016/j.jep.2016.10.065].
  86. Tuorkey MJ. Effects of Moringa oleifera aqueous leaf extract in alloxan induced diabetic mice. Interv Med Appl Sci. 2016; 8(3): 109-117. ISSN 2061-1617. [https://doi.org/10.1556/1646.8.2016.3.7].
  87. El-Desouki NI, Basyony MA, Hegazy MM, El-Aama MS. The antidiabetic effect of Moringa oleifera leaves extract on some biochemical parameters of diabetic rats induced alteration in cytoskeletal desmin of cardiomyocytes. Res J Pharm Biol Chem Sci. 2017; 8(1): 1585-1598. ISSN 0975-8585. [https://www.researchgate.net/publication/323884808].
  88. Joung H, Kim B, Park H, Lee K, Kim H, Sim H, et al. Fermented Moringa oleifera Decreases Hepatic Adiposity and Ameliorates Glucose Intolerance in High-Fat Diet-Induced Obese Mice. J Med Food. 2017; 20(5): 439-447. ISSN 1096-620X. [https://doi.org/10.1089/jmf.2016.3860].
  89. Omodanisi EI, Aboua YG, Ogunti OO. Assessment of the Anti-Hyperglycaemic, Anti-Inflammatory and Antioxidant Activities of the Methanol Extract of Moringa oleifera in Diabetes-Induced Nephrotoxic Male Wistar Rats. Molecules. 2017; 22:1-16. ISSN 1420-3049. [https://doi.org/10.3390/molecules22040439].
  90. Paula PC, Sousa DOB, Oliveira JTA, Carvalho AFU, Alves BGT, Pereira ML et al. A protein isolate from Moringa oleifera leaves has hypoglycemic and antioxidant effects in alloxan-induced diabetic mice. Molecules. 2017; 22(271): 1-15. ISSN 1420-3049. [https://doi.org/10.3390/molecules22020271].
  91. Khan W, Parveen R, Chester K, Parveen S, Ahmad S. Hypoglycemic Potential of Aqueous Extract of Moringa oleifera Leaf and In Vivo GC-MS Metabolomics. Front Pharmacol. 2017; 8: 1-16. ISSN 1663-9812. [https://doi.org/10.3389/fphar.2017.00577].
  92. Amelia D, Santoso B, Purwanto B, Miftahussurur M, Joewono HT, Budiono. Effects of Moringa oleifera on insulin levels and folliculogenesis in polycystic ovary syndrome model with insulin resistance. Immunol Endocr Metab Agents Med Chem. 2018; 18: 22-30. ISSN 1875-6115. [https://doi.org/10.2174/1871522218666180426100754].
  93. Azevedo IM, Araújo-Filho I, Teixeira MMA, Moreira MDFC, Medeiros AC. Wound healing of diabetic rats treated with Moringa oleifera extract. Acta Cir Bras. 2018; 33(9): 799-805. ISSN 0102-8650. [https://doi.org/10.1590/s0102-865020180090000008].
  94. Nazir S, Sulistyo J. Functional properties of glycoside synthesized using polyphenolic extract of Moringa oleifera catalyzed through transglycosylation reaction. J Appl Pharm. Sci. 2018. 9(5): 58-64. ISSN 2231-3354. [https://doi.org/10.7324/JAPS.2019.90507].
  95. Muzumbukilwa WT, Nloot M, Owira PMO. Hepatoprotective effects of Moringa oleifera Lam. (Moringaceae) leaf extracts in streptozotocin-induced diabetes in rats. J Funct Foods. 2019; 57: 75-82. ISSN 1756-4646. [https://doi.org/10.1016/j.jff.2019.03.050].

Author(s)

  • Francker Duarte de Castro
    Federal University of Rio Grande do Norte (UFRN), Health Sciences Center, Department of Pharmacy, Av. General Cordeiro de Farias, s/n, Petrópolis, CEP 59012-570, Natal, RN, Brazil.
    https://orcid.org/0000-0001-8173-1654
  • Larissa Marina Pereira Silva
    Federal University of Rio Grande do Norte (UFRN), Health Sciences Center, Department of Pharmacy, Av. General Cordeiro de Farias, s/n, Petrópolis, CEP 59012-570, Natal, RN, Brazil.
    https://orcid.org/0000-0002-7480-1412
  • Renata Borges de Oliveira
    Federal University of Rio Grande do Norte (UFRN), Health Sciences Center, Department of Pharmacy, Av. General Cordeiro de Farias, s/n, Petrópolis, CEP 59012-570, Natal, RN, Brazil.
    https://orcid.org/0000-0001-6655-205X
  • Silvana Maria Zucolotto
    Federal University of Rio Grande do Norte (UFRN), Health Sciences Center, Department of Pharmacy, Av. General Cordeiro de Farias, s/n, Petrópolis, CEP 59012-570, Natal, RN, Brazil.
    https://orcid.org/0000-0002-2768-0793

Metrics

  • Article viewed 927 time(s)

How to Cite

1.
Potential therapeutic effect of Moringa oleifera Lamarck (Moringaceae) leaves: a revision of its role in glycemic control in vivo studies. Rev Fitos [Internet]. 2022 Dec. 20 [cited 2025 Dec. 8];16(4):508-40. Available from: https://revistafitos.far.fiocruz.br/index.php/revista-fitos/article/view/1315
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2022 Revista Fitos

Report an error