Establishment of anthocyanin-producing habituated callus cultures of Tarenaya rosea (Vahl ex DC.) Soares Neto & Roalson

Drª Claudia Simões-Gurgel
OrcID
Drª Lívia da Silva Cordeiro
OrcID
Drª Tatiana Carvalho de Castro
OrcID
Drª Norma Albarello
OrcID

    Drª Claudia Simões-Gurgel

    Universidade do Estado do Rio de Janeiro

    OrcID https://orcid.org/0000-0001-8358-2568

    Possui Graduação em Ciências Biológicas pela Universidade do Estado do Rio de Janeiro, Mestrado em Biologia (Biociências Nucleares) pela Universidade do Estado do Rio de Janeiro e Doutorado em Biotecnologia Vegetal pela Universidade Federal do Rio de Janeiro. Bióloga do Instituto de Biologia Roberto Alcantara Gomes (IBRAG) da Universidade do Estado do Rio de Janeiro, Docente do Corpo Permanente do Programa de Pós-Graduação em Biologia Vegetal (PGBV/UERJ) e pesquisadora do Núcleo de Biotecnologia Vegetal (NBV/UERJ). Experiência nas áreas de Fisiologia Vegetal e Biotecnologia Vegetal, com ênfase em Cultura de Tecidos, atuando principalmente nos seguintes temas: criopreservação, produção in vitro de plantas e substâncias bioativas.

    Drª Lívia da Silva Cordeiro

    Universidade do Estado do Rio de Janeiro

    OrcID https://orcid.org/0000-0002-6964-7000

    Possui graduação em Ciências Biológicas, licenciatura (2007) e bacharelado (2010), pela Universidade do Estado do Rio de Janeiro, mestrado em Biologia Vegetal (2011) pela Universidade do Estado do Rio de Janeiro e doutorado em Biologia Vegetal pela Universidade do Estado do Rio de Janeiro, com sanduíche no Institut de Recherche pour le Développement (IRD), França (2016). Tem experiência nas áreas de Fisiologia Vegetal e Biotecnologia Vegetal, atuando principalmente nos seguintes temas: plantas medicinais, cultura de tecidos vegetais, criopreservação, produção de metabólitos in vitro, marcadores moleculares e fitoquímica.

    Drª Tatiana Carvalho de Castro

    State University of Rio de Janeiro

    OrcID https://orcid.org/0000-0003-0554-6873

    He has a technical course in food chemistry from the Federal Technical School of Chemistry (1991), a degree in Pharmacy from the Federal University of Rio de Janeiro (1997), a master's degree in Biological Sciences (Nuclear Biosciences) from the State University of Rio de Janeiro (2000) and a PhD in Plant Biology from the State University of Rio de Janeiro (2015). She is currently a Pharmacist (Profile-Natural Products) at the State University of Rio de Janeiro and a Collaborating Researcher at the Oswaldo Cruz Foundation. She has experience in the area of ​​Plant Biotechnology, working mainly on the following topics: production of in vitro metabolites, phytochemical profile, Cleomaceae and Rhamnaceae.

    Drª Norma Albarello

    State University of Rio de Janeiro

    OrcID https://orcid.org/0000-0001-5803-2070

    Graduated in Biological Sciences from the State University of Rio de Janeiro - UERJ, with a Master's degree in Biological Sciences, Area of ​​Concentration in Botany, from the Federal University of Rio de Janeiro - UFRJ and PhD in Biology, Area of ​​Concentration in Nuclear Biosciences, from the University of the State of Rio de Janeiro - UERJ. Associate Professor and Proscientist at the Department of Plant Biology (DBV/IBRAG/UERJ), where she served as head and deputy head between 2006 and 2008. Professor of the Postgraduate Program in Plant Biology (PGBV/IBRAG/UERJ) where she served as Coordinator Deputy in the 2008-2010 biennium. Deputy director of the Roberto Alcantara Gomes Biology Institute - IBRAG/UERJ, for two terms (2012 to 2019). Elected director of IBRAG/UERJ (2020-2023; 2024-2027). Coordinator of the Plant Biotechnology Laboratory (Labplan), Technological Development Unit - UDT of the Plant Biotechnology Center at UERJ (Group leader/CNPq). He served on the Superior Councils of UERJ (Csepe and Consun). She is a member of the UERJ Technical Innovation Chamber. Experience in the areas of Plant Physiology and Plant Biotechnology, with an emphasis on tissue culture, working mainly on the following topics: medicinal plants, natural products, germination, micropropagation, secondary metabolites, in vitro production and ex situ conservation.


Keywords

Cleome rosea
habituation
MS medium
NH4+:NO3-ratio
Total nitrogen
Sucrose

Abstract

A growth regulators-free anthocyanin-producing habituated callus line of Tarenaya rosea was establishment through the selective subculture of cell aggregates from a 2,4-D-dependent anthocyanin callus line to a growth regulators-free MS medium (MS0). After the establishment of the habituated line, new culture conditions were evaluated in order to increase de pigment production. Calluses were transferred to MS0 containing different sucrose concentrations (30; 50; 70; 90 g.L-1), total nitrogen concentrations (50; 60; 70 mM), NH4+ to NO3- ratios (1:1; 1:2; 1:4; 1:6), and total mineral salt concentration (MS; MS1/2; MS1/4). The most suitable culture conditions to pigment induction have combined to create two new culture formulations, named M1 (70 mM total nitrogen + 70 g.L-1 sucrose) and M2 (1:4 NH4+/NO3- ratio + 70 g.L-1 sucrose). Calluses cultivated on M1 and M2 reached an increase on anthocyanin productivity of 3- and 4-fold, respectively, when compared to cultures maintained in standard MS0 medium. The present work demonstrated the feasibility of eliminating the supplementation with 2,4-D in callus cultures of T. rosea without the loss of anthocyanin production. Moreover, the manipulations of basal medium and sucrose concentration contributed with the increment in anthocyanin content.

References

  1. Khoo HE, Azlan A, Tang ST, Lim SM. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res. 2017; 61: 01-21. [https://doi.org/10.1080/16546628.2017.1361779].
  2. Lin B-W, Gong C-C, Song H-F, Cui Y-Y. Effects of anthocyanins on the prevention and treatment of cancer. Br J Pharmacol. 2017; 174: 1226-1243. [https://doi.org/10.1111/bph.13627].
  3. Davis KM, Deroles SC. Prospects for the use of plant cell cultures in food biotechnology. Curr Opin Biotechnol. 2014; 26: 133-140. [https://doi.org/10.1016/j.copbio.2013.12.010].
  4. Arghavani P, Haghbeen K, Mousavi A. Enhancement of Shikalkin Production in Arnebia euchroma Callus by a Fungal Elicitor, Rhizoctonia solani. Iran J Biotech. 2015; 13: 10-16. [https://doi.org/10.15171/ijb.1058].
  5. Lage DA, Tirado MS, Vanicore SR, Sabino KCC, Albarello N. Production of betalains from callus and cell suspension cultures of Pereskia aculeata Miller, an unconventional leafy vegetable. Plant Cell Tiss Organ Cult. 2015; 122:341-350. [https://doi.org/10.1007/s11240-015-0771-x].
  6. Rocha AS, Rocha EK, Alves LM, Moraes BA, Castro TC, Albarello N, Simões-Gurgel C. Production and optimization through elicitation of carotenoid pigments in the in vitro cultures of Cleome rosea Vahl (Cleomaceae). J Plant Biochem Biotechnol. 2015; 24: 105-113. [https://doi.org/10.1007/s13562-013-0241-7].
  7. Meins F. Habituation: heritable variation in the requirement of cultured plant cells for hormones. Annu Rev Genet. 1989; 23: 395-408. [https://doi.org/10.1146/annurev.ge.23.120189.002143].
  8. Gautheret RJ. Hetero-auxines et cultures de tissus végétaux. Bull Soc Chim Biol. 1942. 24: 13-46.
  9. Simões C, Albarello N, Castro TC, Mansur E. Production of anthocyanins by plant cell and tissue culture strategies. In: Erdogan-Orhan I. (Org.). Biotechnological production of plant secondary metabolites. Bentham Science Publishers, 2012. p. 67-86.
  10. Park K, Saimoto H, Nakagawa S, Sakurai A, Yokota T, Takahashi N et al. Occurrence of brassinolide and castasterone in crown gall cells of Catharanthus roseus. Agric Biol Chem. 1989; 53: 805-811. [https://doi.org/10.1080/00021369.1989.10869357].
  11. Kevers C, Filali M, Petit-Paly G, Hagege D, Rideau M, Gasper TH. Habituation of plant cells does not mean insensitivity to plant growth regulators. In Vitro Cell Dev Biol. 1996; 32: 204-209. [https://doi.org/10.1007/BF02822767].
  12. Asano S, Ohtsubo S, Nakajima M, Kusunoki M, Kaneko K, Katayama H et al. Production of anthocyanins by habituated cultured cells of Nyoho strawberry (Fragaria ananassa Duch.). Food Sci Technol Res. 2002; 8: 64-69. [https://doi.org/10.3136/fstr.8.64].
  13. Asano S, Otobe K. Production of phytochemicals by using habituated and long-term cultured cells. Plant Biotechnol. 2011; 28: 51-62. [https://doi.org/10.5511/plantbiotechnology.10.1109a].
  14. Soares Neto RL, Thomas WW, Barbosa MRV, Roalson EH. New combinations and taxonomic notes for Tarenaya (Cleomaceae). Acta Bot Bras. 2018; 32: 540-545. [https://doi.org/10.1590/0102-33062017abb0417].
  15. Simões-Gurgel C, Mattos JCP, Sabino KCC, Caldeira-de-Araújo A, Coelho MGP, Albarello N et al. Medicinal potential from in vivo and acclimatized plants of Cleome rosea Vahl ex DC. (Capparaceae). Fitoterapia. 2006; 77: 94-99.
  16. Simões-Gurgel C, Castro TC, Cordeiro LS, Albarello N, Mansur E, Romanos MTV. Antiviral activity of Cleome rosea extracts from field-grown plants and tissue culture-derived materials against acyclovir-resistant Herpes simplex viruses type 1 (ACVr-HSV-1) and type 2 (ACVr-HSV-2). World J Microb Biot. 2010; 26: 93-99. [https://doi.org/10.1007/s11274-009-0173-5].
  17. Simões-Gurgel C, Rocha AS, Cordeiro LS, Gayer CRM, Castro TC, Coelho MGP et al. Antibacterial activity of field-grown plants, in vitro propagated plants, callus and cell suspension cultures of Cleome rosea Vahl. J Pharm Res. 2012; 5: 3304-3308.
  18. Simões-Gurgel C, Bizarri CHB, Cordeiro LS, Castro TC, Coutada LCM, Silva AJR et al. Anthocyanin production in callus cultures of Cleome rosea: modulation by culture conditions and characterization of pigments by means of HPLC-DAD/ESIMS. Plant Physiol Biochem. 2009; 47: 895-903. [https://doi.org/10.1016/j.plaphy.2009.06.005].
  19. Simões-Gurgel C, Cordeiro LS, Castro TC, Callado CH, Albarello N, Mansur E. Establishment of anthocyanin-producing cell suspension cultures of Cleome rosea Vahl ex DC. (Capparaceae). Plant Cell Tiss Org Cult. 2011; 106: 537-545. [https://doi.org/10.1007/s11240-011-9945-3].
  20. Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant. 1962; 15: 473-497. [https://doi.org/10.1111/j.1399-3054.1962.tb08052.x].
  21. Pischke MS, Huttlin EL, Hegeman AD, Sussman MR. A transcriptome-based characterization of habituation in plant tissue culture. Plant Physiol. 2006; 140: 1255-1278. [https://doi.org/10.1104/pp.105.076059].
  22. Plessis S, Stirk WA, Cress WA, van Stade J. Biochemical comparisons of habituated and non-habituated callus lines of Glycine max (L.) cv. Acme. Plant Growth Regul. 1996; 18: 223-231. [https://doi.org/10.1007/BF00024386].
  23. Smulders MJM, de Klerk GJ. Epigenetics in plant tissue culture. Plant Growth Regul. 2011; 63: 137-146. [https://doi.org/10.1007/s10725-010-9531-4].
  24. Pasqua G, Monacelli B, Mulinacci N, Rinaldi S, Giaccherini C, Innocenti M et al. The effect of growth regulators and sucrose on anthocyanin production in Camptotheca acuminata cell culture. Plant Physiol Biochem. 2005; 43: 293-298. [https://doi.org/10.1016/j.plaphy.2005.02.009].
  25. Solfanelli C, Poggi A, Loreti E, Alpi A, Perata P. Sucrose specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiol. 2006; 140: 637-646. [https://doi.org/10.1104/pp.105.072579].
  26. Ram M, Prasad KV, Kaur C, Singh SK, Arora A, Kumar S. Induction of anthocyanin pigments in callus cultures of Rosa hybrida L. in response to sucrose and ammonical nitrogen levels. Plant Cell Tiss Organ Cult. 2011; 104: 171-179. [https://doi.org/10.1007/s11240-010-9814-5].
  27. Peng M, Hudson D, Schofield A, Tsao R, Yang R, Gu H et al. Adaptation of Arabidopsis to nitrogen limitation involves induction of anthocyanin synthesis, which is controlled by the NLA gene. J Exp Bot. 2008; 59: 2933-2944. [https://doi.org/10.1093/jxb/ern148].
  28. Narayan MS, Venkataraman LV. Effect of sugar and nitrogen on the production of anthocyanin in cultured carrot (Daucus carota) cells. J Food Sci. 2002; 67: 84-86. [https://doi.org/10.1111/j.1365-2621.2002.tb11363.x].
  29. Schiozer AL, Barata LES. Stability of natural pigments and dyes. Rev Fitos. 2007; 3: 6-23. [https://doi.org/10.32712/2446-4775.2007.71].

Most read articles by the same author(s)

Author(s)

Metrics

  • Article viewed 41 time(s)

How to Cite

1.
Establishment of anthocyanin-producing habituated callus cultures of Tarenaya rosea (Vahl ex DC.) Soares Neto & Roalson . Rev Fitos [Internet]. 2024 Jul. 19 [cited 2024 Nov. 21];18:e1662. Available from: https://revistafitos.far.fiocruz.br/index.php/revista-fitos/article/view/1662
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Revista Fitos

Report an error
Deprecated: urlencode(): Passing null to parameter #1 ($string) of type string is deprecated in /sites/producao/revistafitos.far/revistafitos_3405/plugins/generic/coins/CoinsPlugin.php on line 131