Relação estrutura-atividade de saponinas triterpenoidais: propriedades biológicas e aplicabilidades comerciais

Maria de Fátima Simão Jucá Cruz
OrcID
Gabriela Moysés Pereira
OrcID

    Maria de Fátima Simão Jucá Cruz

    Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde/CCS - Bloco H. Avenida Carlos Chagas Filho, 373, Cidade Universitária, Galeão, CEP 21941-590, Rio de Janeiro, RJ, Brasil.

    OrcID https://orcid.org/0000-0002-6611-3388

    Graduated in Chemistry (Bachelor's Degree) with a degree in Industrial Chemistry from the Federal Rural University of Rio de Janeiro (2012). Pedagogical complementation with equivalence to a Degree in Chemistry from the Institution A Vez do Mestre-Cândido Mendes (2021). Master (2015) and PhD (2019) in Chemistry of Natural Products from the Federal University of Rio de Janeiro - Instituto de Pesquisas de Produtos Naturais, where she worked developing research in the area of phytochemistry, focusing on the Investigation of Active Principles in Medicinal Plants. She has experience in spectroscopic techniques such as Nuclear Magnetic Resonance (NMR), Infrared Region Spectroscopy (I.V.), Ultraviolet Region Spectroscopy (U.V.), Chromatographic techniques and in vivo and in vitro biological assays. She has experience as a teacher of Chemistry I at the higher education establishment of the Dom Pedro II Military Firefighter Academy (ABMDPII).

    Gabriela Moysés Pereira

    Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde/CCS - Bloco H. Avenida Carlos Chagas Filho, 373, Cidade Universitária, Galeão, CEP 21941-590, Rio de Janeiro, RJ, Brasil.

    OrcID https://orcid.org/0000-0002-0307-1547

    Graduada em Química Industrial pela Universidade Federal Rural do Rio de Janeiro (2011), Licenciada em química pela AVM Educacional (2017), Mestra (2014) e Doutora (2018) em Química de Produtos Naturais pela Universidade Federal do Rio de Janeiro. Atuou principalmente nos seguintes temas de pesquisa: plantas medicinais, investigação fitoquímica, caracterização estrutural, macromoléculas bioativas, saponinas, polissacarídeos, Ressonância Magnética Nuclear e cromatografia. Atuou como professora de ciências na Secretária Municipal de educação de Seropédica, como conteudista para a Sagah Educacional e Faculdade Única produzindo materiais didáticos de química para o ensino superior . Atualmente exerce a função de analista censitária na Diretoria de Pesquisa/ Coordenação Técnica do Censo Demográfico (DPE/CTD) do Instituto Brasileiro de Geografia e Estatística (IBGE).


Palavras-chave

Triterpenoid saponins
Medicinal chemistry
Therapeutics properties
Vaccine
COVID-19

Resumo

As saponinas são tensoativos não iônicos derivados de plantas e amplamente aplicados em diversos produtos, como cosméticos, desinfetantes, medicamentos, vacinas, como aditivos por propriedades terapêuticas e características químicas próprias. Essas substâncias são de crescente interesse para a pesquisa de medicamentos, pois são constituintes ativos de diversos medicamentos populares, além de comporem uma importante classe da química medicinal. As saponinas triterpenoidais são metabólitos secundários, amplamente distribuídos nas espécies vegetais e caracterizam-se como um dos princípios ativos destas. Estas saponinas possuem potentes atividades antiviral, adjuvante, hemolítica, citotóxica e antiangiogênica que estão relacionadas com a presença de fração química característica. Neste trabalho foram resumidos os estudos encontrados na literatura científica sobre as propriedades terapêuticas das saponinas triterpenoidais, bem como a sua aplicabilidade comercial. Trabalhos recentes sugeriram algumas saponinas triterpenoidais como candidatas ao tratamento de pacientes com COVID-19.

Referências

  1. Zhou W, Yang J, Lou L, Zhu L. Solubilization properties of polycyclic aromatic hydrocarbons by saponin, a plant-derived biosurfactant. Environ Pollut. 2011; 159(5): 1198-1204. ISSN 0269-7491. [https://doi.org/10.1016/j.envpol.2011.02.001] [https://pubmed.ncbi.nlm.nih.gov/21353355/].
  2. Vincken J-P, Heng L, Groot A, Gruppen H. Saponins, classification and occurrence in the plant kingdom. Phytochemistry. 2007; 68(3): 275-297. ISSN 0031-9422. [https://doi.org/10.1016/j.phytochem.2006.10.008] [https://pubmed.ncbi.nlm.nih.gov/17141815/].
  3. Ashraf MF, Abd Aziz M., Stanslas J, Ismail I, Abdul Kadir M, Assessment of antioxidant and cytotoxicity activities of saponin and crude extracts of Chlorophytum borivilianum. Sci World J. 2013; 2013: 1-7. ISSN
  4. -6343. [https://doi.org/10.1155/2013/216894].
  5. Wina E, Muetzel S, Becker K. The impact of saponins or saponin-containing plant materials on ruminant production: a review. J Agric Food Chem. 2005; 53(21): 8093-8105. ISSN 1520-5118. [https://doi.org/10.1021/jf048053d].
  6. Simões CMO, Schenkel EP, Mello JCP, Mentz LA, Petrovick PR. Farmacognosia: do produto natural ao medicamento. 1ª Edição. Porto Alegre: Artmed; 2017. ISBN 978-85-8271-359-4.
  7. Cruz MFSJ, Pereira GM, Ribeiro MG, Silva AM, Tinoco LW, Silva BP et al. Ingasaponin, a complex triterpenoid saponin with immunological adjuvant activity from Inga laurina. Carbohydr Res. 2016; 420: 23-31. ISSN 0008-6215. [https://doi.org/10.1016/j.carres.2015.11.008] [https://pubmed.ncbi.nlm.nih.gov/26717546/].
  8. Pawan MD, Shingade SH, Chandu MS. Comparative study of saponin for surfactant properties and potential application in personal care products. Material today: proceedings. 2021; 45 (3): 5010-5013. ISSN 2214-7853. [https://doi.org/10.1016/j.matpr.2021.01.448].
  9. Wei MP, Qiu JD, Li L, Xie YF, Yu H, Guo YH et al. Saponin fraction from Sapindus mukorossi Gaertn as a novel cosmetic additive: extraction, biological evaluation, analysis of anti-acne mechanism and toxicity prediction. J Ethnopharmacol. 2020; 268: 113552. ISSN 0378-8741. [https://doi.org/10.1016/j.jep.2020.113552].
  10. Lobo AM, Lourenço AM. Biossíntese de Produtos Naturais. 1ª Edição. Lisboa Portugal: Editora IST Pres; 2007. ISBN: 9789728469504.
  11. Dewick PM. Medicinal Natural Products: A Biosynthetic Approach. 3rd Edition. West Sussex: Wiley; 2002. ISBN 0-471-49640-5.
  12. Guha R. On Exploring Structure-Activity Relationships. In: Kortagere S. (eds) In Silico Models for Drug Discovery. Methods Mol Biol Humana. Press, Totowa, NJ. 2013; 993: 81-94. ISBN 978-1-62703-342-8. [https://doi.org/10.1007/978-1-62703-342-8_6].
  13. World Health Organization (WHO). Guidelines for Coronavirus disease (COVID-19): weekly epidemiological update and Weekly operational update (2021). Disponível em: [https://covid19.who.int/]. [Acesso em: 1 out. 2021].
  14. Li H, Cheng C, Li S, Wu Y, Liu Z, Liu M et al. Discovery and structural optimization of 3-O-b-chacotriosyl oleanane-type triterpenoids as potent entry inhibitors of SARS-CoV-2 virus infections. Eur J Med Chem. 2021; 215: 1-14. ISSN 0009-4374. [https://doi.org/10.1016/j.ejmech.2021.113242].
  15. Krammer F. SARS-CoV-2 vaccines in development. Nature. 2020; 586: 516-27. ISSN 0028-0836.[https://doi.org/10.1038/s41586-020-2798-3] [https://www.nature.com/articles/s41586-020-2798-3].
  16. Awadasseid A, Wu YL, Tanaka Y, Zhang W. Current advances in the development of SARS-CoV-2 vaccines. Int J Biol Sci. 2021; 17(1): 8-19. ISSN 1449-2288. [https://dx.doi.org/10.7150%2Fijbs.52569] [https://www.ijbs.com/v17p0008.htm].
  17. Wouters OJ, Shadlen KC, Pollard AJ, Larson HJ, Teerawattananon Y, Jit. M. Challenges in ensuring global access to COVID-19 vaccines: production, affordability, allocation, and deployment. Lancet. 2021; 397: 10278, P1023-1034. ISSN 1474-547X. [https://doi.org/10.1016/s0140-6736(21)00306-8].
  18. Lacaille-Dubois M.-A. Updated insights into the mechanism of action and clinical profile of the immunoadjuvant QS-21: a review. Phytomedicine. 2019; 60: 152905. ISSN 0944-7113.[https://doi.org/10.1016/j.phymed.2019.152905] [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7127804/].
  19. Bahbah EI, Negida A, Nabet MS. Purposing Saikosaponins for the treatment of COVID-19. Med Hypotheses. 2020; 140: 109782. ISSN 0306-9877. [https://doi.org/10.1016/j.mehy.2020.109782].
  20. Bailly C, Vergote G. Glycyrrhizin: An alternative drug for the treatment of COVID-19 infectionand the associated respiratory syndrome. Pharmacol Ther. 2020; 214: 107618. ISSN 1532-6535. [https://doi.org/10.1016/j.pharmthera.2020.107618].
  21. Cibulski S, Teixeira FT, Varela APM et al. IMXQB-80: A Quillaja brasiliensis saponin-based nanoadjuvant enhances Zika virus specific immune responses in mice. Vaccine. 2021; 39(3): 571-579. ISSN 2590-1362. [https://doi.org/10.1016/j.vaccine.2020.12.004] [https://pubmed.ncbi.nlm.nih.gov/33339669/].
  22. Sun HX, Xie Y, Ye YP. Advances in saponin-based adjuvants. Vaccine. 2009; 27(12): 1787-796. ISSN 2590-1362. [https://doi.org/10.1016/j.vaccine.2009.01.091].
  23. Marciani DJ, Vacine adjuvants: role and mechanisms of action in vaccine immunogenicity. Drug Discov. today, DDT, 2003; 20: 934-943. ISSN 1359-6446. [https://doi.org/10.1016/s1359-6446(03)02864-2].
  24. Liu G, Anderson C, Scaltreto H, Barbon J, Kensil CR. QS-21 structure/function studies: effect of acylation on adjuvante activity. Vaccine, 2002; 20(21-22): 2808-810. ISSN 2590-1362.[https://doi.org/10.1016/s0264-410x(02)00209-8] [https://pubmed.ncbi.nlm.nih.gov/12034108/].
  25. Oliveira-Freitas E, Casas CP, Borja-Cabrera GP, Santos FN, Nico D, Souza LOP et al. Acylated and deacylated saponins of Quillaja saponária mixture as adjuvants for the FML- Vaccine Against visceral Leishmaniasis. Vaccine. 2006; 24: 3909-3920. ISSN 0264-410X. [https://doi.org/10.1016/j.vaccine.2006.02.034].
  26. Deng K, Adams MM, David GY. Synthesis and structure verification of the vaccine adjuvant QS-7-Api. Synthetic access to homogeneous Quillaja saponaria immunostimulants. J Am Chem Soc. 2008; 130(18): 5860-586. ISSN 1520-5126. [https://doi.org/10.1021/ja801008m].
  27. Kensil CR. Immunomodulatory adjuvants from Quillaja soponins. Immunopotentiators in Modern Vaccines, 2006; 7: 109-122. ISBN 978-0-12-088403-2 [https://doi.org/10.1016/B978-012088403-2/50008-3].
  28. Barr IG, Sjolander A, Cox JC. ISCOMs and other saponin based adjuvants. Adv Drug Deliv Rev. 1998; 32(3): 247-271. ISSN 0169-409X [https://doi.org/10.1016/s0169-409x(98)00013-1].
  29. Augustin JM., Kuzina V, Andersen SB, Bak S. Molecular activities, biosynthesis and evolution of triterpenoid saponins. Phytochemistry. 2011; 72(6): 435-45. ISSN 0031-9422 [https://doi.org/10.1016/j.phytochem.2011.01.015].
  30. Guana Y-Y, Liua H-J, Luana X, Xua J-R, Lua Q, Liua Y-R et al. Raddeanin A, a triterpenoid saponin isolated from Anemone raddeana, suppresses the angiogenesis and growth of human colo rectal tumor by inhibiting VEGFR2 signaling. Phytomedicine. 2015; 22(1): 103-110. ISSN 0944-7113 [https://doi.org/10.1016/j.phymed.2014.11.008].
  31. Naz I, Ramchandani Sh, Khan MR, Yang MH, Ahn KS. Anticancer Potential of Raddeanin A, a Natural Triterpenoid Isolated from Anemone raddeana Regel. Molecules. 2020; 25(5): 1-20. ISSN 1420-3049 [https://doi.org/10.3390/molecules25051035].
  32. Chena Z-P, Guo L-B, Heb J, Xu J-K, Lic Y-N, Huanga X-Y et al. Triterpene saponins from the seeds of Erythrophleum fordii and their cytotoxic activities. Phytochemistry. 2020; 177: 112428 ISSN 0031-9422. [https://doi.org/10.1016/j.phytochem.2020.112428] [https://pubmed.ncbi.nlm.nih.gov/32535346/].
  33. Ragab EA, Hosny M, Kadry HM, Hassan A. Acylated triterpenoidal saponins and cytokinins from Gleditsia aquatica. J Pharmacogn Phytother. 2010; 2(3): 24-33. ISSN 2141-2502 [https://doi.org/10.5897/jpp.9000006].
  34. Melek FR, Kassem IAM, Miyase T, Fayad W. Caspicaosides E-K, triterpenoid saponins and cytotoxic acylated saponins from fruits of Gleditsia caspica Desf. Phytochemistry. 2014; 100: 110-119. ISSN 0031-9422. [https://doi.org/10.1016/j.phytochem.2014.01.019]
  35. Tamura Y, Miyakoshi M, Yamamoto M, Application of Saponin-Containing Plants in Foods and Cosmetics. Altern Med. 2012; 87-10. ISBN 978-953-51-7054-9 [https://doi.org/10.5772/53333].
  36. Setten DC, Werken G. Molecular Structures of Saponins from Quillaja saponaria Molina. In: Waller GR, Yamasaki K. (eds) Saponins used in traditional and modern medicine: plenum press. 1996; 404: 185-193. ISBN: 978-1-4899-1367-8 [https://doi.org/10.1007/978-1-4899-1367-8_17] [https://pubmed.ncbi.nlm.nih.gov/8957295/].
  37. Girish C, Pradhan SC. Herbal Drugs on the Liver. Chapter 44 - Herbal Drugs on the Liver, Liver Pathophysiology, Academic Press, 2017; 605-620. ISBN 9780128118870 [http://dx.doi.org/10.1016/B978-0-12-804274-8.00044-8].
  38. Hayashi H, Sudo H. Economic importance of licorice. Plant Biotechnol J. 2009; 26(1): 101-104. ISSN 1467-7652. [https://doi.org/10.5511/PLANTBIOTECHNOLOGY.26.101].
  39. Ribeiro BD, Barreto DW, Coelho M. Recovery of Saponins from Jua (Ziziphus joazeiro) by Micellar Extraction and Cloud Point Preconcentration. J Surfactants Deterg. 2013; 17(13): 553-56. ISSN 1558-9293. [http://dx.doi.org/10.1007/s11743-013-1526-5].
  40. Namviriyachote N, Lipipun V, Akkhawattanangkul Y, Charoonrut P, Ritthidej GC. Development of polyurethane foam dressing containing silver and asiaticoside for healing of dermal wound. Asian J Pharm Sci. 2019; 14(1): 63-77. ISSN 1818-0876. [http://dx.doi.org/10.1016/j.ajps.2018.09.001].
  41. Huang C, Huang TH, Yehet KW, Chen YLL et al. Ginsenoside Rg3 ameliorates allergic airway inflammation and oxidative stress in mice. J Ginseng Res. 2002; 45(6): 654-664. ISSN 1226-8453. [https://doi.org/10.1016/j.jgr.2021.03.002].

Autor(es)

  • Maria de Fátima Simão Jucá Cruz
    Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde/CCS - Bloco H. Avenida Carlos Chagas Filho, 373, Cidade Universitária, Galeão, CEP 21941-590, Rio de Janeiro, RJ, Brasil.
    https://orcid.org/0000-0002-6611-3388
  • Gabriela Moysés Pereira
    Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde/CCS - Bloco H. Avenida Carlos Chagas Filho, 373, Cidade Universitária, Galeão, CEP 21941-590, Rio de Janeiro, RJ, Brasil.
    https://orcid.org/0000-0002-0307-1547

Métricas

  • Artigo visto 333 vez(es)

Como Citar

1.
Relação estrutura-atividade de saponinas triterpenoidais: propriedades biológicas e aplicabilidades comerciais. Rev Fitos [Internet]. 30º de junho de 2023 [citado 22º de janeiro de 2025];17(2):295-316. Disponível em: https://revistafitos.far.fiocruz.br/index.php/revista-fitos/article/view/1351
Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 Revista Fitos

Informe um erro