Federal University of Rio de Janeiro, Health Sciences Center/CCS - Block H. Avenida Carlos Chagas Filho, 373, Cidade Universitária, Galeão, CEP 21941-590, Rio de Janeiro, RJ, Brazil.
Graduada em Química (modalidade Bacharelado) com titulação de Química Industrial pela Universidade Federal Rural do Rio de Janeiro (2012). Complementação pedagógica com equivalência a Licenciatura em Química pela Instituição A Vez do Mestre-Cândido Mendes (2021). Mestra (2015) e Doutora (2019) em Química de Produtos Naturais pela Universidade Federal do Rio de Janeiro - Instituto de Pesquisas de Produtos Naturais, onde atuou desenvolvendo pesquisas na área de fitoquímica, tendo como foco a Investigação de Princípios Ativos em Plantas Medicinais. Possui experiência em técnicas espectroscópicas como Ressonância Magnética Nuclear (R.M.N.), Espectroscopia na Região do Infravermelho (I.V.), Espectroscopia na Região do Ultravioleta (U.V.), técnicas Cromatográficas e ensaios biológicos in vivo e in vitro. Possui experiência como professora de Química I do estabelecimento de ensino superior da Academia de Bombeiro Militar Dom Pedro II (ABMDPII).
Gabriela Moysés Pereira
Federal University of Rio de Janeiro, Health Sciences Center/CCS - Block H. Avenida Carlos Chagas Filho, 373, Cidade Universitária, Galeão, CEP 21941-590, Rio de Janeiro, RJ, Brazil.
Graduated in Industrial Chemistry from the Federal Rural University of Rio de Janeiro (2011), Degree in Chemistry from AVM Educacional (2017), Master (2014) and Doctor (2018) in Chemistry of Natural Products from the Federal University of Rio de Janeiro. She has worked mainly on the following research topics: medicinal plants, phytochemical investigation, structural characterization, bioactive macromolecules, saponins, polysaccharides, Nuclear Magnetic Resonance and chromatography. She worked as a science teacher at the Seropédica Municipal Secretary of Education, as a content writer for Sagah Educacional and Faculdade Única, producing chemistry teaching materials for higher education. She currently works as a census analyst at the Research Directorate / Technical Coordination of the Demographic Census (DPE / CTD) of the Brazilian Institute of Geography and Statistics (IBGE).
Saponins are plant-derived non-ionic surfactants and widely applied in many products, such as cosmetics, cleansers, medicines, vaccine, as additives by therapeutic properties and chemical characteristics theirs. These substances are of growing interest for drug research as they’re active constituents of several folk medicines, in addition to comprising an important class of medicinal chemistry. Triterpenoid saponins are secondary metabolites, these’re largely distributed in plant species and they’re characterized as one of the active principles of these. These saponins have potent anti-viral, adjuvant, hemolytic, cytotoxic and anti-angiogenic activities that are relationship with the presence of characteristics chemical moiety. In this work was summarized the studies found in the scientific literature on the therapeutic properties of triterpenoid saponins, as well as commercial applicability theirs. Recent works have suggested some triterpenoid saponins like candidates for treatment of patients with COVID-19.
Ashraf MF, Abd Aziz M., Stanslas J, Ismail I, Abdul Kadir M, Assessment of antioxidant and cytotoxicity activities of saponin and crude extracts of Chlorophytum borivilianum. Sci World J. 2013; 2013: 1-7. ISSN
Wina E, Muetzel S, Becker K. The impact of saponins or saponin-containing plant materials on ruminant production: a review. J Agric Food Chem. 2005; 53(21): 8093-8105. ISSN 1520-5118. [https://doi.org/10.1021/jf048053d].
Simões CMO, Schenkel EP, Mello JCP, Mentz LA, Petrovick PR. Farmacognosia: do produto natural ao medicamento. 1ª Edição. Porto Alegre: Artmed; 2017. ISBN 978-85-8271-359-4.
Pawan MD, Shingade SH, Chandu MS. Comparative study of saponin for surfactant properties and potential application in personal care products. Material today: proceedings. 2021; 45 (3): 5010-5013. ISSN 2214-7853. [https://doi.org/10.1016/j.matpr.2021.01.448].
Wei MP, Qiu JD, Li L, Xie YF, Yu H, Guo YH et al. Saponin fraction from Sapindus mukorossi Gaertn as a novel cosmetic additive: extraction, biological evaluation, analysis of anti-acne mechanism and toxicity prediction. J Ethnopharmacol. 2020; 268: 113552. ISSN 0378-8741. [https://doi.org/10.1016/j.jep.2020.113552].
Lobo AM, Lourenço AM. Biossíntese de Produtos Naturais. 1ª Edição. Lisboa Portugal: Editora IST Pres; 2007. ISBN: 9789728469504.
Dewick PM. Medicinal Natural Products: A Biosynthetic Approach. 3rd Edition. West Sussex: Wiley; 2002. ISBN 0-471-49640-5.
Guha R. On Exploring Structure-Activity Relationships. In: Kortagere S. (eds) In Silico Models for Drug Discovery. Methods Mol Biol Humana. Press, Totowa, NJ. 2013; 993: 81-94. ISBN 978-1-62703-342-8. [https://doi.org/10.1007/978-1-62703-342-8_6].
World Health Organization (WHO). Guidelines for Coronavirus disease (COVID-19): weekly epidemiological update and Weekly operational update (2021). Disponível em: [https://covid19.who.int/]. [Acesso em: 1 out. 2021].
Li H, Cheng C, Li S, Wu Y, Liu Z, Liu M et al. Discovery and structural optimization of 3-O-b-chacotriosyl oleanane-type triterpenoids as potent entry inhibitors of SARS-CoV-2 virus infections. Eur J Med Chem. 2021; 215: 1-14. ISSN 0009-4374. [https://doi.org/10.1016/j.ejmech.2021.113242].
Bahbah EI, Negida A, Nabet MS. Purposing Saikosaponins for the treatment of COVID-19. Med Hypotheses. 2020; 140: 109782. ISSN 0306-9877. [https://doi.org/10.1016/j.mehy.2020.109782].
Bailly C, Vergote G. Glycyrrhizin: An alternative drug for the treatment of COVID-19 infectionand the associated respiratory syndrome. Pharmacol Ther. 2020; 214: 107618. ISSN 1532-6535. [https://doi.org/10.1016/j.pharmthera.2020.107618].
Marciani DJ, Vacine adjuvants: role and mechanisms of action in vaccine immunogenicity. Drug Discov. today, DDT, 2003; 20: 934-943. ISSN 1359-6446. [https://doi.org/10.1016/s1359-6446(03)02864-2].
Oliveira-Freitas E, Casas CP, Borja-Cabrera GP, Santos FN, Nico D, Souza LOP et al. Acylated and deacylated saponins of Quillaja saponária mixture as adjuvants for the FML- Vaccine Against visceral Leishmaniasis. Vaccine. 2006; 24: 3909-3920. ISSN 0264-410X. [https://doi.org/10.1016/j.vaccine.2006.02.034].
Deng K, Adams MM, David GY. Synthesis and structure verification of the vaccine adjuvant QS-7-Api. Synthetic access to homogeneous Quillaja saponaria immunostimulants. J Am Chem Soc. 2008; 130(18): 5860-586. ISSN 1520-5126. [https://doi.org/10.1021/ja801008m].
Kensil CR. Immunomodulatory adjuvants from Quillaja soponins. Immunopotentiators in Modern Vaccines, 2006; 7: 109-122. ISBN 978-0-12-088403-2 [https://doi.org/10.1016/B978-012088403-2/50008-3].
Augustin JM., Kuzina V, Andersen SB, Bak S. Molecular activities, biosynthesis and evolution of triterpenoid saponins. Phytochemistry. 2011; 72(6): 435-45. ISSN 0031-9422 [https://doi.org/10.1016/j.phytochem.2011.01.015].
Guana Y-Y, Liua H-J, Luana X, Xua J-R, Lua Q, Liua Y-R et al. Raddeanin A, a triterpenoid saponin isolated from Anemone raddeana, suppresses the angiogenesis and growth of human colo rectal tumor by inhibiting VEGFR2 signaling. Phytomedicine. 2015; 22(1): 103-110. ISSN 0944-7113 [https://doi.org/10.1016/j.phymed.2014.11.008].
Naz I, Ramchandani Sh, Khan MR, Yang MH, Ahn KS. Anticancer Potential of Raddeanin A, a Natural Triterpenoid Isolated from Anemone raddeana Regel. Molecules. 2020; 25(5): 1-20. ISSN 1420-3049 [https://doi.org/10.3390/molecules25051035].
Ragab EA, Hosny M, Kadry HM, Hassan A. Acylated triterpenoidal saponins and cytokinins from Gleditsia aquatica. J Pharmacogn Phytother. 2010; 2(3): 24-33. ISSN 2141-2502 [https://doi.org/10.5897/jpp.9000006].
Melek FR, Kassem IAM, Miyase T, Fayad W. Caspicaosides E-K, triterpenoid saponins and cytotoxic acylated saponins from fruits of Gleditsia caspica Desf. Phytochemistry. 2014; 100: 110-119. ISSN 0031-9422. [https://doi.org/10.1016/j.phytochem.2014.01.019]
Tamura Y, Miyakoshi M, Yamamoto M, Application of Saponin-Containing Plants in Foods and Cosmetics. Altern Med. 2012; 87-10. ISBN 978-953-51-7054-9 [https://doi.org/10.5772/53333].
Ribeiro BD, Barreto DW, Coelho M. Recovery of Saponins from Jua (Ziziphus joazeiro) by Micellar Extraction and Cloud Point Preconcentration. J Surfactants Deterg. 2013; 17(13): 553-56. ISSN 1558-9293. [http://dx.doi.org/10.1007/s11743-013-1526-5].
Namviriyachote N, Lipipun V, Akkhawattanangkul Y, Charoonrut P, Ritthidej GC. Development of polyurethane foam dressing containing silver and asiaticoside for healing of dermal wound. Asian J Pharm Sci. 2019; 14(1): 63-77. ISSN 1818-0876. [http://dx.doi.org/10.1016/j.ajps.2018.09.001].
Huang C, Huang TH, Yehet KW, Chen YLL et al. Ginsenoside Rg3 ameliorates allergic airway inflammation and oxidative stress in mice. J Ginseng Res. 2002; 45(6): 654-664. ISSN 1226-8453. [https://doi.org/10.1016/j.jgr.2021.03.002].
Maria de Fátima Simão Jucá Cruz
Federal University of Rio de Janeiro, Health Sciences Center/CCS - Block H. Avenida Carlos Chagas Filho, 373, Cidade Universitária, Galeão, CEP 21941-590, Rio de Janeiro, RJ, Brazil.
https://orcid.org/0000-0002-6611-3388
Gabriela Moysés Pereira
Federal University of Rio de Janeiro, Health Sciences Center/CCS - Block H. Avenida Carlos Chagas Filho, 373, Cidade Universitária, Galeão, CEP 21941-590, Rio de Janeiro, RJ, Brazil.
https://orcid.org/0000-0002-0307-1547