A preliminary study of the cytotoxicity of the protein extract of abajerú commercialized in markets

Pedrete, T d A;
Carmo, J d O d S;
Barreto, E d O;
Moreira, , J. C.

Thaís de Almeida Pedrete

Universidade do Estado do Rio de Janeiro (UERJ), Pavilhão Haroldo Lisboa da Cunha, Instituto de Biologia Roberto Alcântara Gomes, Rua São Francisco Xavier, 524, Maracanã, CEP 20550-900, Rio de Janeiro, RJ, Brasil.

Possui graduação em Ciências Biológicas pela Universidade Santa Úrsula (2010), é Mestre em Química pela Pontifícia Universidade Católica do Rio de Janeiro (2013) e Doutora em Saúde Pública e Meio Ambiente pela Escola de Saúde Pública - Fiocruz (2018). Tem experiência na área Química Analítica, com ênfase em Monitoramento e Química Ambiental, e na área de Saúde Pública e Meio Ambiente, com ênfase em Biologia Molecular. Trabalhou como assistente de coordenação no Laboratório de Estudos Marinhos e Ambientais (LABMAM) na PUC-Rio, desenvolvendo metodologias de biomarcadores celulares e genéticos (micronúcleo, vermelho neutro e ensaio cometa) e métodos analíticos para determinação de metabólitos de HPAs em LC/MS, HPLC E GC/MS, e atuou como professora substituta no Departamento de Oceanografia da UERJ. Durante o doutorado, desenvolveu metodologias e aplicações de potenciais marcadores proteômicos no estudo de doenças humanas e exposição ocupacional, no laboratório de Toxicologia do Centro de Estudos da Saúde do Trabalhador e Ecologia Humana (CESTEH). Atualmente desenvolve métodos de identificação e quantificação de biomarcadores protéicos para doenças neurodegenerativas no Laboratório de Neurofisiologia - IBRAG/UERJ, como bolsista PNPD/Capes.

Julianderson de Oliveira dos Santos Carmo

Universidade Federal de Alagoas (UFAL), Instituto de Ciências Biológicas e da Saúde, Laboratório de Biologia Celular, campus A.C. Simões. Avenida Lourival Melo Mota, s/n, Tabuleiro dos Martins, CEP 57072-970, Maceió, AL, Brasil.

Possui graduação em Ciências Biológicas pela Universidade Federal de Alagoas (2018) e mestrado em Ciências da Saúde pela Universidade Federal de Alagoas (2019). Tem experiência na área de Farmacologia, com ênfase em Farmacologia Bioquímica e Molecular, atuando principalmente nos seguintes temas: endothelial cells, triterpenoids e angiogenesis.

Emiliano de Oliveira Barreto

Universidade Federal de Alagoas (UFAL), Instituto de Ciências Biológicas e da Saúde, Laboratório de Biologia Celular, campus A.C. Simões. Avenida Lourival Melo Mota, s/n, Tabuleiro dos Martins, CEP 57072-970, Maceió, AL, Brasil.

Possui graduação em Ciências Biológicas pela Universidade Federal do Rio de Janeiro (1997), mestrado (2001) e doutorado (2005) em Biologia Celular e Molecular pela Fundação Oswaldo Cruz. Realizou pós-doutorado (2015) na Universidade de Rennes-1, Instituição que mantém cooperação científica na França. Professor Associado da Universidade Federal de Alagoas credenciado no Programa de Pós-graduação em Ciências da Saúde onde atuou como vice-coordenador (2009-2011) e coordenador (2011-2013). Membro da Sociedade Brasileira de Farmacologia e Terapêutica Experimental (SBFTE), sendo eleito para o Conselho Fiscal (2011-2014) e para o Conselho Deliberativo (2014-2017) onde atua como Presidente (2017-2020). Coordenador local do SIG-Farmaco (Grupo de Interesse Especial em Farmacologia e Terapêutica da Rede Universitária de Telemedicina - RUTE). Coordena e participa de projetos na área de farmacologia, biologia celular e nanotecnologia, atuando principalmente nos seguintes temas: inflamação, nanobiotecnologia e produto natural.

Josino Costa Moreira

Fundação Oswaldo Cruz, Escola Nacional de Saúde Pública, Centro de Estudos da Saude do Trabalhador E Ecologia Humana (CESTEH), Rua Leopoldo Bulhões, 1480 Manguinhos, CEP 21041-210, Rio de Janeiro, RJ, Brasil.

Possui graduação em Farmacia pela Universidade Federal de Juiz de Fora (1967), mestrado em Química (Química Analítica Inorgânica) pela Pontifícia Universidade Católica do Rio de Janeiro (1977) e doutorado em Quimica - Loughborough University (1991). Tem experiência na área de Química, com ênfase em Eletroanalítica, atuando principalmente nos seguintes temas: rio de janeiro, contaminação ambiental, voltammetry, chumbo e agrotoxicos. 

Fator H = 25 (base Scopus, 2011)


Resumo

The use of plants and their products for medical treatment is a quite common procedure in Brazil, especially for treatment of diabetes. In fact, several plants can demonstrate hypoglycemic effects in vitro assays. However, the use for human treatment requires the knowledge of their toxicological properties. The aim of this study was to evaluate the effect of protein extracts of Chrysobalanus icaco collected from natural habitats and of Eugenia astringens acquired from the market in Rio de Janeiro on the viability and migration of fibroblasts. E. astringens has a similar morphology as C. icaco and it is sold as Chrysobalanus in a popular market. Being a different plant, E. astringens expresses different proteins, and its protein extract has proved to possess higher toxic properties than C. icaco does. Cytotoxicity assays indicated that, as the protein extract concentration increases, fibroblast viability decreases. Only the E. astringens extract displayed cytotoxicity at all concentrations, in addition to reduced fibroblast migration. The results obtained in this study demonstrates that it is necessary integrative policies for rational use of medicinal plants and their commercialization, since the current use of medicinal plants may be inadequate, and it is of great importance for Public Health.


Referências

  1. Bochner R, Fiszon JT, Assis MA, Avelar KES. Problems associated with the use of medicinal plants commercialized in “Mercadão de Madureira”, Rio de Janeiro City, Brazil. Rev Bras Pl Med. 2012; 14(3): 537-47. [CrossRef].
  2. Venancio VP, Almeida MR, Maria L, Antunes G. Cocoplum (Chrysobalanus icaco L.) decreases doxorubicin-induced DNA damage and downregulates Gadd45a, Il-1 β, and Tnf- α in vivo. Food Res Int. 2018; 105: 996-1002. [CrossRef].
  3. Silva IM, Peixoto AL. O abajurú (Chrysobalanus icaco L. e Eugenia rotundifolia Casar.) comercializado na cidade do Rio de Janeiro, Brasil. Braz J Pharmacogn. 2009; 19(1 B): 325-32. [CrossRef].
  4. Stockert JC, Blázquez-Castro A, Cañete M, Horobin RW, Villanueva Á. MTT assay for cell viability: Intracellular localization of the formazan product is in lipid droplets. Acta Histochem. 2012; 114(8): 785-96. [CrossRef].
  5. Zandi M, Masoumian M, Shariatinia A, Sanjabi MR. Optimal concentrations and synergistic effects of some herbal extracts on viability of dermal fibroblasts. Gene, Cell Tissue [Internet]. 2016; 3(4): Available from: [Link].
  6. Stockert JC, Horobin RW, Colombo LL, Blázquez-Castro A. Tetrazolium salts and formazan products in Cell Biology: Viability assessment, fluorescence imaging, and labeling perspectives. Acta Histochem. 2018; 120(3): 159–67. [CrossRef].
  7. Liang CC, Park AY, Guan JL. In vitro scratch assay: A convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc. 2007; 2(2): 329–33. [CrossRef].
  8. Pitz HDS, Pereira A, Blasius MB, Voytena APL, Affonso RCL, Fanan S et al. In vitro evaluation of the antioxidant activity and wound healing properties of jaboticaba (Plinia peruviana) fruit peel hydroalcoholic extract. Oxid Med Cell Longev. 2016; 2016. [CrossRef].
  9. Manoj K, Mishra D, Maity TK, Gupta SD. Screening wound-healing potential of different Aloe vera L. germplasms at the cellular level. Med Aromat Plant Sci Biotechnol. 2009; 3(1):62-4. Print ISSN 1752-3389.
  10. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951; 193(1): 265-275. Print ISSN 1083-351X.
  11. Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods. 1983; 65(1-2): 55-63. [CrossRef].
  12. Queiroz JMG, Suzuki MCM, Motta APR, Nogueira JMR, Carvalho EM. Aspectos populares e científicos do uso de espécies de Eugenia como fitoterápico. Rev Fitos. 2015; 9(2): 87-100. [CrossRef].
  13. Negri G. Diabetes melito: plantas e princípios ativos naturais hipoglicemiantes. Rev Bras Ciên Farm. 2005; 41(2): 121-42. [CrossRef].
  14. Aquino JA, Baldoni AO, Di Lorenzo OC, Cardoso CS, de Figueiredo RC, Sanches C. Pharmacotherapeutic empowerment and its effectiveness in glycemic control in patients with Diabetes Mellitus. Diabetes Metab Syndr Clin Res Rev. 2019; 13(1): 137-42. [CrossRef].
  15. Hu F, Stampfer M, Haffner S, Solomon C, Willett W, Manson J. Elevated risk of cardiovascular disease prior to clinical diagnosis of Type 2 diabetes. Diabetes Care. 2002; 25(7): 1129–34. [CrossRef].
  16. Calloni C, Silva Santos LF, Martínez LS, Salvador M. Data on cell viability of human lung fibroblasts treated with polyphenols-rich extract from Plinia trunciflora (O. Berg) Kausel. Data Br. 2016; 6: 728-31. [CrossRef].
  17. Silva JPB, Peres AR, Paixão T, Silva A, Baetas A, Barbosa W et al. Antifungal activity of hydroalcoholic extract of Chrysobalanus icaco against oral clinical isolates of Candida Species. Pharmacogn Res. 2017; 9(1): 96-100. [CrossRef].
  18. Auricchio MT, Bugno A, Barros SBM, Bacchi EM. Atividades antimicrobiana e antioxidante e toxicidade de Eugenia uniflora. Lat Am J Pharm. 2007; 26(1): 76-81. ISSN 0326-2383.
  19. Colla G, Brighente IMC. Potencial tóxico dos extratos de Eugenia catharinae. In: 51º Congresso Brasileiro de Química. Meio Ambiente e Energia. São Luís, MA. 2011; 7(136). Acesso em: 27 jul. 2019. Disponível em: [Link].

Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License. Copyright (c) 2021 Revista Fitos