Do quinino aos antimaláricos sintéticos: o conhecimento das plantas medicinais como estratégia potencial na terapia da CoVID-19

Carlos Henrique Brasil Bizarri
Mayara de Azeredo Rezende
OrcID
Aline Estácio Ribeiro de Mattos
OrcID
Andrea Bezerra da Nóbrega
OrcID
Glauco de Kruse Villas Bôas
OrcID

    Carlos Henrique Brasil Bizarri

    Fundação Oswaldo Cruz (Fiocruz), Instituto de Tecnologia em Fármacos (Farmanguinhos), Centro de Inovação em Biodiversidade e Saúde (CIBS), campus - Centro de Referência Professor Hélio Fraga (CRPHF), Estrada da Curicica, 2000, Curicica, CEP 22780-194, Rio de Janeiro, RJ, Brasil.

    Possuo graduação em Farmácia pela Universidade Federal do Rio de Janeiro (1991), especialização em Farmácia Industrial pela Universidade Federal do Rio de Janeiro (1992) e mestrado em Química Orgânica pela Universidade Federal do Rio de Janeiro (1998). Tenho extensa experiência na área Química Orgânica Analítica, com ênfase em Metrologia Química, atuando desde a gestão de projetos como também o desenvolvimento e validação de métodos analíticos nas áreas de alimentos, farmácia, fitoquímica, fitoterápicos, meio ambiente, química e de petróleo, empregando as técnicas de cromatografia em fase líquida e gasosa, espectrometria de massas, espectrofotometria em UV/VIS, espectrofotometria no Infravermelho (FT-IR) e análises físico-químicas. Gestão de pessoas, financeira, investimentos, orçamentária e da qualidade (BPL, NBR ISO 17025, Auditor). Consultoria técnica (implantação de novos métodos em laboratórios, suporte técnico) e auditoria de segunda parte da NBR ISO 17025. Experiência no atendimento de normas, regulamentações e legislações brasileiras (ANVISA, MAPA, INMETRO, Farmacopéia) e internacionais (ICH, AOAC, USP) para o desenvolvimento de metodologias analíticas, estudos de estabilidade, limites regulatórios de concentração, entre outros.

    Mayara de Azeredo Rezende

    Fundação Oswaldo Cruz (Fiocruz), Instituto de Tecnologia em Fármacos (Farmanguinhos), Centro de Inovação em Biodiversidade e Saúde (CIBS), campus Complexo Tecnológico de Medicamentos (CTM), Avenida Comandante Guaranys, 447, Prédio 10, Jacarepaguá, CEP 22775-903, Rio de Janeiro, RJ, Brasil.

    OrcID https://orcid.org/0000-0002-1287-0316

    Farmacêutica, especialista em Gestão da Inovação em Fitomedicamentos e em Assuntos Regulatórios, Mestre em Oncologia com ênfase em Biologia Molecular. Possui 10 anos de experiência na área de diganóstico de leucemias e linfomas, além de ter atuado com biologia molecuar/proteômica do plasma da medula óssea de pacientes com LMA. Ainda, possui 3 anos de experiência na área de assuntos regulatórios na industria farmacêutica com ênfase em PI através de consultorias realizadas para Farmanguinhos/FIOCRUZ. Atua como parecerista convidada pela REVISTA FITOS. Tecnologista em Pesquisa e Desenvolvimento no Centro de Inovação em Medicamentos da Biodiversidade (CIMB) atuando com prospecção científica e tecnológica de fitoterápicos. Possui experiência como Técnica em Farmácia atuando no combate e controle do SARS-CoV-2 em UPAS do municipio do Rio de Janeiro e no Hospital de Campanha do RioCentro.

    Aline Estácio Ribeiro de Mattos

    Fundação Oswaldo Cruz (Fiocruz), Instituto de Tecnologia em Fármacos (Farmanguinhos), Centro de Inovação em Biodiversidade e Saúde (CIBS), campus Complexo Tecnológico de Medicamentos (CTM), Avenida Comandante Guaranys, 447, Prédio 10, Jacarepaguá, CEP 22775-903, Rio de Janeiro, RJ, Brasil.

    OrcID https://orcid.org/0000-0001-8149-1419

    Possui graduação em Ciências físicas e biológicas pela Faculdade de Filosofia, Ciências e Letras de Duque de Caxias (2001). Especialização em Gestão Educacional Integrada pelo Instituto Superior de Educação de Afonso Cláudio (2014). Especialização em Gestão da Inovação em Fitomedicamentos por Farmanguinhos/Fiocruz (2016). Cursando Mestrado Profissional em Sistemas de Gestão pela Universidade Federal Fluminense. Atuação profissional como Tecnologista e Desenvolvimento no Centro de Inovação em Biodiversidade e Saúde de Farmanguinhso/Fiocrz (01/2016/ a 01/2020).Tem experiência na área de Biologia Geral, com ênfase em Ciências Biológicas

    Andrea Bezerra da Nóbrega

    Fundação Oswaldo Cruz (Fiocruz), Instituto de Tecnologia em Fármacos (Farmanguinhos), Centro de Inovação em Biodiversidade e Saúde (CIBS), campus Centro de Referência Professor Hélio Fraga (CRPHF), Estrada da Curicica, 2000, Curicica - Jacarepaguá, CEP 22780-194, Rio de Janeiro, RJ, Brasil.

    OrcID https://orcid.org/0000-0003-4039-1280

    Graduada em Farmácia pela Universidade Estácio de Sá (2005) e em Química pela Faculdade de Humanidades Pedro II (1992). Mestrado e Doutorado em Ciências Aplicadas à Produtos para Saúde pela Universidade Federal Fluminense (2012 e 2017). Pós Doutoranda em Inovação Farmacêutica pela Universidade Federal de Goiás. Atualmente é Tecnologista em Saúde Pública em Farmanguinhos, Fiocruz, no Núcleo de Gestão em Biodiversidade e Saúde (NGBS) e atua como Coordenadora da Plataforma Agroecológica de Fitomedicamentos e do Setor de Desenvolvimento Tecnológico e Inovação. Tem vasta experiência na área de Desenvolvimento de Tecnologia Farmacêutica, atuando atualmente no desenvolvimento de formulações farmacêuticas a partir de espécies vegetais. 

    Glauco de Kruse Villas Bôas

    Fundação Oswaldo Cruz (Fiocruz), Instituto de Tecnologia em Fármacos (Farmanguinhos), Centro de Inovação em Biodiversidade e Saúde (CIBS), campus Complexo Tecnológico de Medicamentos (CTM), Avenida Comandante Guaranys, 447, Prédio 10, Jacarepaguá, CEP 22775-903, Rio de Janeiro, RJ, Brasil.

    OrcID https://orcid.org/0000-0003-3065-9626

    Doutor em Ciências na área de Saúde Pública, Escola Nacional de Saúde Pública - ENSP/FIOCRUZ. Mestre em Gestão de Ciência e Tecnologia em Saúde, Escola Nacional de Saúde Pública ? ENSP/Fiocruz. Graduado em Farmácia pela Universidade Federal do Rio de Janeiro, UFRJ. Tecnologista Sênior da Fundação Osvaldo Cruz - Ministério da Saúde. Atualmente é Coordenador do Centro de Inovação em Biodiversidade e Saúde ? CIBS do Instituto de Tecnologia em Fármacos - Farmanguinhos/FIOCRUZ. Coordenador do Curso de Pós-Graduação Lato sensu em "Gestão da Inovação em Medicamentos da Biodiversidade" - EAD/ENSP - Farmanguinhos/Fiocruz. Coordenador e docente do Curso de Pós-Graduação Lato sensu em "Inovação em Fitomedicamentos". Coordenador do Sistema Nacional de Redes - RedesFito do conhecimento voltado para a inovação em medicamentos da biodiversidade. Atual Líder do Grupo de Pesquisa / CNPq "Inovação em medicamentos da biodiversidade" das linhas de pesquisa: conhecimento, aprendizado e informação na inovação em medicamentos da biodiversidade; inovação em medicamentos da biodiversidade; pesquisa e desenvolvimento (P&D) de medicamentos fitoterápicos e fitofármacos no enfoque ecossistêmico; políticas de ciência, tecnologia e inovação em saúde (CT&IS) na perspectiva da sustentabilidade; redes do conhecimento e inovação em medicamentos da biodiversidade. Atual Editor da área de inovação da Revista Fitos. Atual Coordenador do Grupo de Trabalho COVID-19 / CIBS - Farmanguinhos/Fiocruz.


Palavras-chave

Plantas medicinais
SARS-CoV-2
COVID-19
Antiviral
ação anti-inflamatória
Imunomoduladora

Resumo

CoVID-19 é uma doença infecciosa causada pelo vírus SARS-CoV-2, que apresenta uma sintomatologia complexa, atingindo vários órgãos e sistemas do organismo humano. Estudos com plantas medicinais indicam as diversas atividades farmacológicas que uma mesma espécie vegetal pode apresentar. Plantas com atividade antimalárica têm sido alvo de estudos para o tratamento da CoVID-19, através de suas ações combatendo diretamente o vírus, como na redução ou eliminação dos sintomas. O objetivo deste estudo foi verificar, na literatura científica, o uso das plantas medicinais com atividade antimalárica como potencial estratégia na terapia da CoVID-19. Foram realizadas pesquisa, sistematização de artigos e revisões da literatura de plantas com atividade antimalárica, antiviral, anti-inflamatória e imunomoduladora publicados nos últimos 20 anos. Listou-se 27 espécies de plantas importantes com atividade antimalárica. Dentre essas, plantas dos gêneros Cinchona e Artemisia destacaram-se por apresentarem atividades antimalárica e antiviral, tendo como principais constituintes majoritários, responsáveis por estas atividades, a quinina e a artemisinina, respectivamente. Foi possível destacar a importância e urgência da pesquisa e do desenvolvimento de medicamentos provenientes da diversidade vegetal, considerando a multiplicidade de ações farmacológicas que as plantas selecionadas apresentam, podendo ser potencialmente aplicáveis ​​na terapia contra a CoVID-19.

Referências

  1. França TCC, Santos MG, Figueroa-Villar JD. Malária: Aspectos históricos e quimioterapia. Quim Nova. 2008; 31(5): 1271-1278. ISSN 1678-7064. [Link].
  2. Foye WO, Lemke TL, Williams DA. Principles of Medicinal Chemistry, 4th ed., Williams & Wilkins: Philadelphia.1995; 995p. ISBN-13: 978-0683033236.
  3. Gomes AP, Vitorino RR, Costa AP, Mendonça EG, Oliveira MGA, Siqueira-Batista R. Malária grave por Plasmodium falciparum. Rev Bras Ter Intensiva. 2011; 23(3): 358-369. ISSN 0103-507X. [CrossRef].
  4. D’Alessandro S, Scaccabarozzi D, Signorini L, Perego F, Ilboudo DP, Ferrante P et al. The Use of Antimalarial Drugs against Viral Infection. Microorganisms. 2020; 8 (1): 85. ISSN 2076-2607. [CrossRef] [PubMed].
  5. Bolzani MS, Bolzani VS. Do Peru à Java: A trajetória da quinina ao longo dos séculos. Disponível em: [Link]. Acesso em: 30 mai. 2020.
  6. Sá IM. A resistência à cloroquina e a busca de antimalariais entre as décadas de 1960 e 1980. Hist Ciên Saúde Mang. Rio de Janeiro. 2011; 18 (2): 407-430. ISSN 0104-5970. [CrossRef]. Acesso em: 02 dez. 2020.
  7. World Health Organization, WHO Publications. Coronavirus disease 2019 (CoVID-19) Situation Report – 51. Geneva, March/2020. Disponível em: [Link]. Acesso em: 13 jun. 2020.
  8. Cao W, Li T. CoVID-19: towards understanding of pathogenesis. Cell Res. 2020; 30(5): 367-369. ISSN 1748-7838. [CrossRef] [PubMed].
  9. Gurib-Fakim A. Medicinal plants: Traditions of yesterday and drugs of tomorrow. Molec Asp Med. 2006; 27(1): 1-93. [CrossRef] [PubMed].
  10. Pan WH, Xu XY, Shi N, Tsang SW, Zhang HJ. Antimalarial activity of plant metabolites. Int J Mol Sci. 2018; 19(5): 1382. ISSN 1422-0067. [CrossRef] [PubMed].
  11. Silva O, Barbosa S, Diniz A, Valdeira ML, Gomes E. Plant extracts antiviral activity against herpes simplex virus type 1 and African swine fever virus. Inter J Pharmacog. 1997; 35(1): 12-16. [CrossRef].
  12. Kerb R, Fux R, Mörike K, Kremsner PG, Gil JP, Gleiter CH et al. Pharmacogenetics of antimalarial drugs: effect on metabolism and transport [Internet]. Lancet Infect Dis. 2009; 9(12): 760-74. [CrossRef] [PubMed]. [cited 2020 Oct 29].
  13. Elewa H, Wilby KJ. A Review of Pharmacogenetics of Antimalarials and Associated Clinical Implications [Internet]. Vol. 42, Europ J Drug Metabol Pharmacok. Springer-Verlag France. 2017; 42(5): 745-56. [CrossRef] [PubMed]. [cited 2020 Oct 29].
  14. World Health Organization, WHO Publications. Combination therapies and formulation of antimalarial drug policy. Genova. Jul. 2003. [Link].
  15. Brasil. Ministério da Saúde. Guia de tratamento da malária no Brasil [recurso eletrônico] / Secretaria de Vigilância em Saúde, Departamento de Imunização e Doenças Transmissíveis. – Brasília: Ministério da Saúde, 2020. 76 p.: il. Acesso: World Wide Web: ISBN 978-85-334-2754-9. [Link].
  16. Koita OA et al. AQ-13, an investigational antimalarial, versus artemether plus lumefantrine for the treatment of uncomplicated Plasmodium falciparum malaria: a randomised, phase 2, non-inferiority clinical trial. Lancet Infect Dis. 2017; 17(12): 1266-1275. ISSN 1473-3099. [CrossRef] [PubMed].
  17. Alven S, Aderibigbe. Combination therapy strategies for the treatment of malaria Molecules. 2019; 24(19): 3601. [CrossRef] [PubMed].
  18. Haeusler IL, Chan XHS, Guérin PJ, White NJ. The arrhythmogenic cardiotoxicity of the quinoline and structurally related antimalarial drugs: A systematic review. BMC Med [Internet]. 2018; 16(1). [CrossRef]. [cited 2020 Nov 4].
  19. Al-Bari AA. Chloroquine analogues in drug discovery: New directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases. J Antimicrob Chemother [Internet]. Nov 12 2014; 70(6): 1608-21. [CrossRef] [PubMed]. [cited 2020 Nov 4].
  20. Braga CBE, Martins AC, Cayotopa ADE, Klein WW, Schlosser AR, Da Silva AF et al. Side effects of chloroquine and primaquine and symptom reduction in malaria endemic area (Mâncio lima, Acre, Brazil). Interdiscip Perspect Infect Dis [Internet]. 2015; ID 346853. [CrossRef]. [cited 2020 Nov 4].
  21. Jin Y, Yang H, Ji W, Wu W, Chen S, Zhang W et al. Virology, Epidemiology, Pathogenesis, and Control of CoVID-19. Viruses. 2020; 12(14): 372. [CrossRef].
  22. Yuki K, Fujiogi M, Koutsogiannaki S. CoVID-19 pathophysiology: A review. Clin Immunol. 215(2020): 108427. [CrossRef].
  23. Bellavite P, Donzelli A. Hesperdin and SARS-CoV-2: New Light on the Healthy Function of Citrus Fruits. Antioxidants. 2020; 9(8): 742. [CrossRef].
  24. Campbell JE, Cohall D. Pharmacognosy Fundamentals, Applications and Strategies. Academic Press; 1ª ed. 2017. p.513-525. 738p. ISBN-13:978-0128021040.
  25. Geoffrey M Currie. Pharmacology Part 1: Introduction to pharmacology and pharmacodynamics. J of Nuclear Med Technol. first published online March 29, 2018. [Link] [CrossRef].
  26. da Mota LMH et al. Diretrizes para o tratamento da artrite reumatóide. Rev Bras Reumatol. 2013; 53(2): 158-183. ISSN 0482-5004. [CrossRef].
  27. Brasil, Ministério da Saúde, Portaria Nº 100, de 7 de fevereiro de 2013, Aprova o Protocolo Clínico e Diretrizes Terapêuticas do Lúpus Eritematoso Sistêmico [Link].
  28. Kimura T, Takabatake Y, Takahashi A, Isaka Y. Chloroquine in Cancer Therapy: A Double-Edged Sword of Autophagy. Cancer Res. 2013; 73(1): 3-7. [CrossRef].
  29. Kay R, DuBois RE. Clindamycin/primaquine therapy and secondary prophylaxis against Pneumocystis carinii pneumonia in patients with AIDS. South Medl J. 1990. 83(4): 403-404. [CrossRef].
  30. Barber BA, Pegram PS, High KP. Clindamycin/Primaquine as Prophylaxis for Pneumocystis carinii Pneumonia. Clin Infect Dis. 1996; 23(4): 718-722. [CrossRef] [PubMed].
  31. de Negreiros PIR, Siqueira TDA. Ações da assistência de enfermagem ao portador de insuficiência renal crônica em tratamento hemodialítico. Bol Info Unimotrisaúde Socioger. 2016; 7(3): 58-70. [Link].
  32. Pinheiro MCN, Xavier MB, Cardoso BS, Ferreira MMR, Ishikawa EAI, Silveira FT. Ensaio clínico aberto comparando a mefloquina e o antimoniato de meglumina no tratamento da leishmaniose tegumentar americana na Amazônia. Rev Para Med. 2002; 16(1): 19-24. [Link].
  33. Wang Y, Wang Y, You F, Xue J. Novel use for old drugs: The emerging role of artemisinin and its derivatives in fibrosis. Pharmacol Res. 2020; 157: 104829. [CrossRef].
  34. Cheong DHJ, Tan DWS, Wong FWS, Tran T. Anti-malarial drug, artemisinin and its derivatives for the treatment of respiratory diseases. Pharmacol Res. 2020; 158: 104901. [CrossRef].
  35. Wolf R, Baroni A, Greco R, Corrado F, Ruocco E, Tufano MA et al. Quinine sulfate and HSV replication: Implications in malaria-endemic areas. Dermato Online J. 2003; 9(3): ISSN 1087-2108. [Link].
  36. Li X, Wang Y, Agostinis P et al. Is hydroxychloroquine beneficial for CoVID-19 patients? Cell Death Dis 11. 2020; 512. [CrossRef].
  37. Ben-Zvi I, Kivity S, Langevitz P, Shoenfeld Y. Hydroxychloroquine: from malaria to autoimmunity. Clinic Rev Allerg Immunol. 2012; 42(2): 145-153. [CrossRef] [PubMed].
  38. Folha informativa CoVID-19 - Escritório da OPAS e da OMS no Brasil. Atualizada em 29 de outubro de 2020. [Link]. Acesso em: 30 out. 2020.
  39. Haq FU et al. Artemisia annua: trials are needed for CoVID-19. Phyto Res. 2020; 34(10): 1-2. [CrossRef] [PubMed].
  40. Gendrot M et al. Antimalarial artemisinin-based combination therapies (ACT) and CoVID-19 in Africa: in vitro inhibition of SARS-CoV-2 replication by mefloquine-artesunate. Inter J Infect Dis. 2020; 99: [CrossRef] [PubMed].
  41. Evaluating the efficacy of artesunate in adults with mild symptoms of CoVID-19, U.S. Nat Libr Med. [Link].
  42. Add on to Azythromycine, Phytomedicine and/or Antimalarial Drug vs Hydroxychloroquine in Uncomplicated CoVID-19 Patients (CANCoVID-19). U.S. Nat Libr Med. [Link].
  43. CoVID-19 Treatment in South Africa. U.S. Nat Libr Med. [Link].
  44. The Efficacy and Safety of Pyramax in Mild to Moderate COVID-19 Patients. U.S. Nat Libr Med. [Link].
  45. World Health Organization, WHO Publications, Geneva, March/2020. Disponível em: [Link]. Acesso em: 13 jun. 2020.
  46. Lu J-J, Pan W Hu Y-J, Wang Y-T. Multi-Target Drugs: The Trend of Drug Research and development. PLoS ONE. 2012; 7(6): e40262. [CrossRef].
  47. Uzor PF. Alkaloids from plants with antimalarial activity: a review of recent studies. Evidence-based Complement Altern Med. 2020; Article ID 8749083 | 17 pages. [CrossRef].
  48. Cock IE, Selesho MI, van Vuuren SF. A review of the traditional use of southern African medicinal plants for the treatment of malaria. J Ethnopharmacol. Dec. 2019; 245: 112176. ISSN 0378-8741. [CrossRef] [PubMed].
  49. Alesaeidi S, Sepide M. A Systematic Review of Anti-malarial Properties, Immunosuppressive Properties, Anti-inflammatory Properties, and Anti-cancer Properties of Artemisia Annua. Electr Phys. ISSN 2008-5842. Oct. 2016; 8(10): 3150-3155. [CrossRef].
  50. Brahmachari G, Gorai D, Roy R. Argemone mexicana: Chemical and pharmacological aspects. Braz J Pharmacogn. 2013; 23(3): 559-75. ISSN 0102-695X. [CrossRef].
  51. Chang YC, Hsieh PW, Chang FR, Wu RR, Liaw CC, Lee KH, et al. Two new protopines argemexicaines A and B and the anti-HIV alkaloid 6-acetonyldihydrochelerythrine from Formosan Argemone mexicana. Pl Med. 2003; 69(2): 148-52. [CrossRef] [PubMed].
  52. Botsaris AS. Plants used traditionally to treat malaria in Brazil: the archives of Flora Medicinal. J Ethnobiol Ethnomed. 2007; 3: 18. ISSN 1746-4269. [CrossRef] [PubMed].
  53. Ehimwenma SO, Anirban P. Antiplasmodial, antioxidant and immunomodulatory activities of ethanol extract of Vernonia amygdalina del. Leaf in Swiss mice. Avicenna J Phytomed. Mar-apr. 2016; 6(2): 236-247. [PubMed].
  54. Asante DB et al. Anti-inflammatory, anti-nociceptive and antipyretic activity of Young and old leaves of Vernonia amygdalina. Biomed Pharmaco. 2019; 111: 1187-1203. [CrossRef].
  55. Enejoh OS, Ogunyemi IO, Bala MS, Oruene IS, Suleiman MM, FolorunshoAmbali S. Ethnomedical Importance of Citrus aurantifolia (Christm) Swingle. The PharmaInnov J. 2015; 4(8): 1-6. ISSN 2277-7695. [Link].
  56. Amorim JL et al. Anti-Inflammatory Properties and Chemical Characterization of the Essential Oils of Four Citrus Species. PLoS ONE 11(4): e0153643. [CrossRef].
  57. Mesia K, Tona L, Mampunza MM, Ntamabyaliro N, Muanda T, Muyembe T et al. Antimalarial efficacy of a quantified extract of Nauclea Pobeguinii stem bark in human adult volunteers with diagnose dun complicated Falciparum malaria. Part 2: A clinical phase IIB trial. Planta Med. 2012; 78(9): 853-60. ISSN 0032-0943. [CrossRef] [PubMed].
  58. Mbiantcha M, Tsafack EG, Ateufack G, Nana YW, Bomba TFD, Djuichou NSF et al. Analgesic, anti-inflammatory and anti-arthritic properties of aqueous and methanolic stem bark extracts from Nauclea Pobeguinii (Rubiacee) in Rats. J Complement Integr Med. 2018; 15(4): 2017-0140, ISSN 1553-3840. [CrossRef] [PubMed].
  59. Donalisio M et al. In vitro anti-Herpes simplex virus activity of crude extract of the roots of Nauclea latifolia Smith (Rubiaceae). BMC Compl Alter Med. 2013; 13: 266. [Link].
  60. Singh AK, Pal A, Dutt HK. Antimalarial efficacy of Nyctanthes arbor-tristis and its effect on combination with Artesunate in Plasmodium berghei K173 induced mice model. Int J Res Pharmacol Pharmacother. 2019; 8(1): 1-9. ISSN 2278-2656. [Link].
  61. Bharshiv CK, Garg SK, Bhatia AK. Immunomodulatory activity of aqueous extract of Nyctanthes arbor-tristis flowers with particular reference to splenocytes proliferation and cytokines induction. Indian J Pharmacol. 1 Jul. 2016; 48(4): 412-7. [cited 2020 Nov 12]. [CrossRef] [PubMed].
  62. Gupta P et al. Antiviral profile of Nyctanthes arbortristis L. against encephalitis causing viroses. Indian J Exp Biol. 2005; 43(12): 1156-60. PMID: 16359127. [Link] [PubMed].
  63. Gilbert B, Favoreto R. Quassia amara L. (Simaroubaceae). Rev Fitos. 2010; 5(3): 4-19. ISSN 1808-9569. [Link].
  64. Gilbert B, Ferreira J, Alves L. Monografias de plantas medicinais brasileiras e aclimatadas. Quassia amara L. 1ª ed. Abifito e FINEP. 2004; 259: 106.
  65. Sá MS, Menezes MN, Krettli AU, Ribeiro IM, Tomassini TCB, Ribeiro RS et al. Antimalarial activity of physalins B, D, F, and G. J Nat Prod. 2011; 74(10): 2269-72. ISSN 0163-3864. [CrossRef][PubMed].
  66. Sharma N, Bano A, Dhaliwal HS, Sharma V. A pharmacological comprehensive review on ‘Rassbhary’ Physalis angulata (L.). Inter J Pharm Pharmac Sci. 2015; 7(8): 34-8. ISSN 0975-1491. Available from: [Link]. [cited 2020 Jun 23].
  67. Ayodhyareddy P, Rupa P. Ethno Medicinal, Phyto Chemical and Therapeutic Importance of Physalis angulata L.: A Review. Inter J Sci Res (IJSR). 2016; 5(5): 2122-2127. [Link].
  68. Gutierrez MPR, Gonzalez MNA, Hoyo-Vadillo C. Alkaloids from Piper: a review of its phytochemistry and pharmacology. Mini Rev Med Chem. 2013; 13(2): 163-193. ISSN 1389-5575. [CrossRef] [PubMed].
  69. Bertol JW et al. Antiviral activity of fractions from leaves of Piper regnelli var. pallescens. Braz J Pharmacog. Nov./Dec. 2012; 22(6): 1290-1294. ISSN 0102-695X. [CrossRef].
  70. Abbas J and Syafruddin. Antiplasmodial evaluation of one compound from Calophyllum flavoranulum. Indones J Chem. 2014; 14(2): 185-91. ISSN‎ ‎1411-9420. [CrossRef].
  71. Poonam GD, Manasi SG, Tannaz JB. Psidium guajava: A Single Plant for Multiple Health Problems of Rural Indian Population. Pharmacogn Rev. Jul-Dec 2017; 11(22): 167-174. [CrossRef][PubMed].
  72. Khalil H, Abd El Maksoud AI, Roshdey T, Elâ€Masry S. Guava flavonoid glycosides prevent influenza A virus infection via rescue of P53 activity. J Med Virol. 24 Jan. 2019; 91(1): 45-55. Available from: [Link] [CrossRef] [PubMed].
  73. Kasim LS, Olaleye KO, Fagbohun AB, Ibitoye SF, Adejumo OE. Chemical composition and antibacterial activity of essential oils from Struchium sparganophora Linn. Ktze Asteraceae. Adv Biol Chem. 2014; 04(04): 246-52. ISSN 2162-2191. [CrossRef].
  74. Madureira MC, Martins PA, Gomes M, Paiva J, Cunha AP, Rosário V. Antimalarial activity of medicinal plants used in traditional medicine in S. Tomé and Príncipe islands. J Ethnopharmacol. 2002; 81(1): 23-9. ISSN 0378-8741. [CrossRef] [PubMed].
  75. Aderibige AO, Agboola OI, Eduviere AT. Anti-inflammatory and analgesic properties of Struchium sparganophora Linn leaves in mice. Afr J Med Med Sci. 2015; 44(1): 71-77. [PubMed].
  76. Kamboj A, Saluja A. Ageratum conyzoides L.: a review on its phytochemical and pharmacological profile. Int J Green Pharm. 2008; 2(2): 59. [CrossRef].
  77. Ogbole et al. In vitro antiviral activity of twenty-seven medicinal plant extracts from Southwest Nigeria against three serotypes of echoviruses. Virol J. 2018; 15(110): ISSN 1743-422X. [CrossRef].
  78. Oliveira AMGC. Avaliação de atividade antimalárica e citotóxica de plantas medicinais dos Biomas Caatinga e Amazônico. 115 f. 2011. Dissertação de Mestrado [Programa de Pós-Graduação em Ciências Biológicas] - Universidade Federal do Rio Grande do Norte. Natal, RN, 2011. [Link].
  79. Soro TY, Néné-bi AS, Zahoui OS, Yapi HF, Traoré F. Anti-inflamatory activity of the fractions of the aqueous extract of Ximenia americana (Linnaeus) (Olacaceae). Inter J Pharm Rev Res. 2015; 5(2): 137-142. ISSN 2248-9207. [Link].
  80. Asres K et al. Antiviral Activity Against Human Immunodeficiency Virus Type 1 (HIV-1) and Type 2 (HIV-2) of Ethnobotanically Selected Ethiopian Medicinal Plants. Phytother. Res. 2001; 15: 62-69. [CrossRef] [PubMed].
  81. Farias ALF, Rodrigues ABL, Martins RL, Rabelo EM, Farias CWF, Almeida SSMS. Chemical characterization, antioxidant, cytotoxic and microbiological activities of the essential oil of leaf of Tithonia diversifolia (Hemsl) A. Gray (Asteraceae). Pharmac. 2019; 12(1): 34. ISSN‎ ‎1424-8247. [CrossRef] [PubMed].
  82. Upadhyay SN, Kawlni L. Pharmacological Profile of Tithonia diversifolia (Hemsl.) A. Gray: A Comprehensive Review. J Drug Res Ayurvedic Sci. 2017; 2(3): 183-7. [CrossRef].
  83. Almonte-Flores DC, Paniagua-Castro N, Escalona-Cardoso G, Rosales-Castro M. Pharmacological and genotoxic properties of polyphenolic extracts of Cedrela odorata L. Juglans regia L. barks in rodents. Evidence-based Compl Altern Med. 2015; Article ID187346. [CrossRef].
  84. Khalil H, Abd El Maksoud AI, Roshdey T, El-Masry S. Guava flavonoid glycosides prevent influenza A virus infection via rescue of P53 activity. J Med Virol. 24 Jan. 2019; 91(1): 45-55. Available from: [Link]. [cited 2020 Jun 23].
  85. Adeleye, OO, Ayeni OJ, Ajamu, MA. Traditional and medicinal uses of Morinda lucida. J Med Plan Stud. 2018; 6(2): 249-254. [Link].
  86. Lawal HO, Etatuvie SO, Fawehinmi AB. Ethnomedicinal and Pharmacological properties of Morinda lucida. J Nat Prod. 2012; 5: 93-99. [Link].
  87. Al-Snafi AE. Bioactive components and pharmacological effects of Canna indica-An overview. Inter J Pharmacol Toxicol. 2015; 5(2): 71-75. ISSN 2249-7668. [Link].
  88. Kumbhar ST, Patil SP, Une HD. Phytochemical analysis of Canna indica L. roots and rhizomes extract. Biochem Biophys Reports. 2018; 16: 50-5. ISSN 2405-5808. [CrossRef].
  89. Thepouyporn A et al. Purification and characterization of anti-HIV-1 protein from Canna indica L. leaves. Southeast Asian J Trop Med Public Health. 2012; 43(5): 1153-1160. [PubMed].
  90. Sarje SK et al. A pharmacognostic and pharmacological review on Canna indica Linn. IJRPC. 2019; 9(3): 61-77. [CrossRef] [Link].
  91. Oliveira FQ, Andrade-Neto V, Krettli AU, Brandão MGL. New evidences of antimalarial activity of Bidens pilosa roots extract correlated with polyacetylene and flavonoids. J Ethnopharmacol. 2004; 93(1): 39-42. ISSN 0378-8741. [CrossRef] [PubMed].
  92. Lucchetti L, Teixeira DF, Barbi NS, Silva AJR. Bidens pilosa (Asteraceae). Rev Fitos. 2009; 4(2): 60-70. Disponível em: [Link].
  93. Chiang LC, Chang JS, Chen CC, Ng LT, Lin CC. Anti-Herpes Simplex Virus Activity of Bidens pilosa and Houttuynia cordata. Am J Chin Med. 2003; 31(3): 355-62. [CrossRef] [PubMed].
  94. Bartolome AP, Villaseñor IM, Yang WC. Bidens pilosa L. (Asteraceae): Botanical Properties, Traditional Uses, Phytochemistry, and Pharmacology. Hindawi Publ Corp. 2013; 1-51. [CrossRef] [Link].
  95. Andrade-Neto VF, Brandão MGL, Nogueira F, Rosário VE, Krettli AU. Ampelozyziphus amazonicus Ducke (Rhamnaceae), a medicinal plant used to prevent malaria in the Amazon Region, hampers the development of Plasmodium bergheis sporozoites. Int J Parasitol. 2008; 38(13): 1505-1511. ISSN 0020-7519. [CrossRef].
  96. Peçanha LMT et al. Immunobiologic and Anti-inflammatory Properties of a Bark Extract from Ampelozizyphus amazonicus Ducke. Biomed Res Int. 2013; 2013: 451679. ISSN 2314-6141. [CrossRef].
  97. Amaral ACF et al. Updated studies on Ampelozizyphus amazonicus, a medicinal plant used in the Amazonian Region. Pharmacog Rev. [Phcog Rev.]. 2008; 2(4): 308-316. [Link].
  98. Silva LE, Reis RA, Moura EA, Amaral W, Sousa Junior PT. Plantas do Gênero Xylopia: Composição Química e Potencial Farmacológico. Rev Bras Plan Med. 2015; 17(4) Supl.1: 814-826. ISSN 1983-084X. [CrossRef].
  99. Phytomedicines Versus Hydroxychloroquine as an Add on Therapy to Azythromycin in Asymptomatic CoVID-19 Patients (PHYTCOVID-19). U.S. Nat Libr Med. 2020. [Link].
  100. Camostat and Artemisia Annua vs Placebo in COVID-19 Outpatients. U.S. Nat Libr Med. 2020. [Link].
  101. COVID-19: Collecting Measurements of Renin-angiotensin-system Markers, Such as Angiotensin-2 and Angiotensin 1-7 (Tomeka). U.S. Nat Libr Med. 2020 [Link].
  102. Rabbani AB, Parikh RV, Rafique AM. Colchicine for the Treatment of Myocardial Injury in Patients with corona virus disease 2019 (COVID 91) - An old drug with new life? JAMA Network Open. 2020; 3(6): e2013556. [CrossRef].
  103. Deftereos SG, Giannopoulos G, Vrachatis DA et al. GRECCO-19 Investigators. Effect of colchicine vs standard care on cardiac and inflammatory biomarkers and clinical outcomes in patients hospitalized with coronavirus disease 2019: the GRECCO-19 randomized clinical trial. JAMA Netw Open. 2020; 3(6): e2013136. [CrossRef] [PubMed].
  104. Borquaye LS et al. Alkaloids from Cryptolepis sanguinolenta as potential inhibitors of SARS-CoV-2 viral proteins: an in-silico study. BioMed Res Inter. 2020; 2020: Article ID 5324560, 14 pages. [CrossRef] [PubMed].
  105. Pandeyaa KB, Ganeshpurkarb A, Mishrac MK. Natural RNA dependent RNA polymerase inhibitors: Molecular docking studies of some biologically active alkaloids of Argemone mexicana. Med Hypot. 2020; 144: 109905. [CrossRef] [PubMed].
  106. Gutierrez-Villagomez JM, Campos-García T, Molina-Torres J, Lopez MG, Vazquez-Martínez JC. Alkamides and Piperamides as Potential Antivirals against the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). J Phys Chem Lett. 2020; 11: 8008-8016. [CrossRef] [PubMed].
  107. Musfiroh I, Azura AR, Rahayu D. Prediction of Asiatic Acid Derivatives Affinity Against SARS-CoV-2 Main Protease Using Molecular Docking. Pharmac Sci Res (PSR). 7(Special Issue on COVID-19). 2020; 57-64. [CrossRef].
  108. Zhou et al. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov. 2020; 6: 14. [CrossRef] [Link].

Artigos mais lidos pelo mesmo(s) autor(es)

1 2 > >> 

Autor(es)

  • Carlos Henrique Brasil Bizarri
    Fundação Oswaldo Cruz (Fiocruz), Instituto de Tecnologia em Fármacos (Farmanguinhos), Centro de Inovação em Biodiversidade e Saúde (CIBS), campus - Centro de Referência Professor Hélio Fraga (CRPHF), Estrada da Curicica, 2000, Curicica, CEP 22780-194, Rio de Janeiro, RJ, Brasil.
  • Mayara de Azeredo Rezende
    Fundação Oswaldo Cruz (Fiocruz), Instituto de Tecnologia em Fármacos (Farmanguinhos), Centro de Inovação em Biodiversidade e Saúde (CIBS), campus Complexo Tecnológico de Medicamentos (CTM), Avenida Comandante Guaranys, 447, Prédio 10, Jacarepaguá, CEP 22775-903, Rio de Janeiro, RJ, Brasil.
    https://orcid.org/0000-0002-1287-0316
  • Aline Estácio Ribeiro de Mattos
    Fundação Oswaldo Cruz (Fiocruz), Instituto de Tecnologia em Fármacos (Farmanguinhos), Centro de Inovação em Biodiversidade e Saúde (CIBS), campus Complexo Tecnológico de Medicamentos (CTM), Avenida Comandante Guaranys, 447, Prédio 10, Jacarepaguá, CEP 22775-903, Rio de Janeiro, RJ, Brasil.
    https://orcid.org/0000-0001-8149-1419
  • Andrea Bezerra da Nóbrega
    Fundação Oswaldo Cruz (Fiocruz), Instituto de Tecnologia em Fármacos (Farmanguinhos), Centro de Inovação em Biodiversidade e Saúde (CIBS), campus Centro de Referência Professor Hélio Fraga (CRPHF), Estrada da Curicica, 2000, Curicica - Jacarepaguá, CEP 22780-194, Rio de Janeiro, RJ, Brasil.
    https://orcid.org/0000-0003-4039-1280
  • Glauco de Kruse Villas Bôas
    Fundação Oswaldo Cruz (Fiocruz), Instituto de Tecnologia em Fármacos (Farmanguinhos), Centro de Inovação em Biodiversidade e Saúde (CIBS), campus Complexo Tecnológico de Medicamentos (CTM), Avenida Comandante Guaranys, 447, Prédio 10, Jacarepaguá, CEP 22775-903, Rio de Janeiro, RJ, Brasil.
    https://orcid.org/0000-0003-3065-9626

Métricas

  • Artigo visto 1117 vez(es)

Como Citar

1.
Do quinino aos antimaláricos sintéticos: o conhecimento das plantas medicinais como estratégia potencial na terapia da CoVID-19. Rev Fitos [Internet]. 30º de setembro de 2021 [citado 22º de novembro de 2024];15(3):366-84. Disponível em: https://revistafitos.far.fiocruz.br/index.php/revista-fitos/article/view/1086
Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Copyright (c) 2021 Revista Fitos

Informe um erro